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Some definitions: independent sets
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Figure: G has α(G ) = |{a, b, c , y}| = 4.

Definition
An independent or a stable set is a set of pairwise non-adjacent vertices.
The independence number or the stability number α(G ) of G is
the maximum cardinality of an independent set in G .

Example

{a}, {a, b}, {a, b, x}, {a, b, c , y} are independent sets of G .
{a, b, c , x}, {a, b, c, y} are maximum independent sets, hence α(G ) = 4.
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Some definitions: matchings and matching number

Definition
A matching in G is a set of non-incident edges.

The matching number µ(G ) of G is the maximum size of a matching in G .
A matching covering all the vertices is called perfect.

Example

{a1a2} is a maximum matching in K3, hence µ(K3) = 1
{v1v2, v3v4} is maximum matching in C5, hence µ(C5) = 2
{t1t2, t3t4, t5t5} is maximum matching in G , hence µ(G ) = 3

w w
w

�
�
�

a1

a2

a3
K3

w w
w w w@

@
@v1

v2 v3

v4
v5C5 w w w

w w w
@
@
@t1

t2

t3

t4

t5

t6
G

Figure: Only G has perfect matchings; e.g., M = {t1t3, t2t4, t5t6}.
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Some definitions: König-Egerváry graphs

Remark
b|V | /2c+ 1 ≤ α(G ) + µ(G ) ≤ |V | hold for every graph G = (V ,E ).

Definition (R. W. Deming (1979), F. Sterboul (1979))

G = (V ,E ) is a König—Egerváry graph if α(G ) + µ(G ) = |V |.
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Figure: G1 is a König—Egerváry graph, since α(G1) + µ(G1) = 7 = |V (G1)|,
while G2 is not a König—Egerváry graph, as α(G2) + µ(G2) = 4 < 5 = |V (G2)|.

Theorem (D. König (1931), E. Egerváry (1931))

Each bipartite graph G = (V ,E ) satisfies α(G ) + µ(G ) = |V |.
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A characterization for König-Egerváry graphs

Notation
If A∩ B = ∅ in G = (V ,E ), then (A,B) = {ab ∈ E : a ∈ A, b ∈ B}.
If S ∈ Ind(G ) and H = G − S , we write G = S ∗H.

Theorem (Levit and Mandrescu, Discrete Math. 2003)

For a graph G = (V ,E ), the following properties are equivalent:
(i) G is a König-Egerváry graph;
(ii) G = S ∗H, where S ∈ Ω(G ) and |S | ≥ µ(G ) = |V − S |;
(iii) G = S ∗H, where S is an independent set with |S | ≥ |V − S | and

(S ,V − S) contains a matching of size |V − S |.
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Figure: By above theorem, part (ii), only H is a König-Egerváry graph.
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Another characterization of König-Egerváry graphs

Definition
If A∩ B = ∅ in G = (V ,E ), then (A,B) = {ab ∈ E : a ∈ A, b ∈ B}.

Theorem (Levit and Mandrescu, Discrete Applied Math. 2013)

For a graph G = (V ,E ), the following properties are equivalent:
(i) G is a König-Egerváry graph;
(ii) each maximum matching is contained in (S∗,V − S∗)

for some maximum independent set S∗;
(iii) each maximum matching is contained in (S ,V − S)

for every maximum independent set S .
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Figure: M * (S ,V (G )− S), hence G is not a König-Egerváry graph.

H is a König-Egerváry graph.
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Corona of graphs

Definition
The corona of the graphs X and {Hi : 1 ≤ i ≤ n} is the graph

G = X ◦ {H1,H2, ...,Hn} obtained by joining each vi ∈ V (X ) to

all the vertices of Hi , where V (X ) = {vi : 1 ≤ i ≤ n}.
If every Hi = H, we write G1 = X ◦ H.

G = H ◦K1 is a König-Egerváry graph with a perfect matching.w w w w
v1 v2 v3 v4

X

w w w w
G1 w w w w

v1 v2 v3 v4
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Figure: The graphs G1 = X ◦ K1 and G2 = X ◦ {K3,K2,P3,K1}.
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Square of a graph

Definition
The square of the graph G = (V ,E ) is the graph G 2 = (V ,U),
where xy ∈ U if and only if x 6= y and distG (x , y) ≤ 2.

w w
w w
C4 w w

w w
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K1,3 w w
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K3 + e w w
w w
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K4

Figure: Non-isomorphic graphs having the same square.

Example

C 24 = K
2
1,3 = (K3 + e)

2 = K 24 = K4.

Remark
(i) There is no G such that G 2 = C4.
(ii) If one of the n vertices of G has n− 1 neighbors, then G 2 = Kn.
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Square root of a graph

Definition
If there is some graph H such that H2 = G ,

then H is called a square root of G , i.e., H ∈
√
G .

A graph may have more than one square root.

Example
Every H of order n that has a vertex of degree n− 1 is a root of Kn.

There are graphs having no square root.

Example

P3 has no square root, i.e., the equation H2 = P3 has no solution.
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Some old results

Theorem (A. Mukhopadhyay, J. Combin. Th., 1967)
A connected graph G on n vertices v1, v2, ..., vn, has a square root if and
only if there exists an edge clique cover Q1, ...,Qn of G such that, for all
i , j ∈ {1, ..., n}, the following hold:
(i) Qi contains vi , for all i ∈ {1, ..., n}; and
(ii) for all i , j ∈ {1, ..., n}, Qi contains vj iff Qj contains vi .

v2 Q2 = {v2, v3}
Q3 = {v3, v4}v3v4

Q4 = {v4, v1}

v1v1 Q1 = {v1, v2}

w w
w w

C4

{Q1,Q2,Q3,Q4} is the only edge clique cover of C4{Q1,Q2,Q3,Q4} is the only edge clique cover of C4{Q1,Q2,Q3,Q4} is the only edge clique cover of C4
Figure: C4 has no square root: v3 ∈ Q2 , while v2 /∈ Q3.
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Example
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v2 Q2 = {v2, v4}
Q3 = {v1, v3, v4}v3v4

Q4 = {v2, v3, v4}

v1v1 Q1 = {v1, v3}
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w w

G

P4 is a square root of GP4 is a square root of GP4 is a square root of G

Figure: G has P4 as a square root.Levit & Mandrescu (AU & HIT) Square Roots 19/06 13 / 55



Some algorithmic results

Theorem (D.J. Ross and F. Harary, Bell System Tech. J., 1960)
Tree roots of a graph, when they exist, are unique up to isomorphism.

Theorem (Y. L. Lin, S. Skiena, LNCS 557, 1991)

There is an O(m) time algorithm for finding the square roots of a planar
graph.

Theorem (Y. L. Lin, S. Skiena, LNCS 557, 1991)

The tree square root of a graph can be found in O(m) time, where m
denotes the number of edges of the given tree square root.

Theorem (Y. L. Lin, S. Skiena, SIAM J. of Discrete Math, 1995)

There is a linear time algorithm to recognize squares G 2 of graphs, where
G is a tree.
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Problem (SqR)
A Square Root of a Graph
Instance: A graph G.
Question: Does there exist a graph H such that H2 = G?

Theorem (R. Motwani, M. Sudan, Discrete Applied Math, 1994)
Problem SqR is NP-complete.

Theorem (L.C. Lau, D.G. Corneil, SIAM J. Discrete Math, 2004)
The Problem SqR remains NP-complete for chordal graphs.

Theorem (Martin Milanič, Oliver Schaudt, Discrete Applied Math,
2013)
The Problem SqR is polynomial for trivially perfect and threshold graphs.
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Figure: Chordal graphs: only G2 has square roots, namely G1 ∈
√
G2.
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Problem (SqR)
A Square Root of a Graph
Instance: A graph G.
Question: Does there exist a graph H such that H2 = G?

Theorem (Martin Milanič, Oliver Schaudt, Discrete Applied Math,
2013)
The Problem SqR is polynomial for trivially perfect graphs.

G is a trivially perfect graph if each of its induced subgraphs H has
α(H) maximal cliques (M. C. Golumbic, Discrete Math. 1978).

They are exactly the (P4 and C4)-free graphs (Golumbic, DM 1978).
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Figure: Only G2,G3 are trivially perfect, and G1 ∈
√
G2.Levit & Mandrescu (AU & HIT) Square Roots 19/06 17 / 55



Threshold graphs

Definition
A graph G = (V ,E ) is called threshold (V. Chvatal and P. L. Hammer,
1977) if it can be obtained from K1 by iterating, in any order, the
operations of adding a new vertex which is connected to

no other vertex (i.e., an isolated vertex) or
every other vertex (i.e., a dominating vertex).

Example
K1,n and Kn are threshold graphs.

w1
w
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w
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w
4

w
5

w
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6

G

Figure: G is a threshold graph : 4 and 6 are dominating vertices.
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Problem (SqR)
A Square Root of a Graph
Instance: A graph G.
Question: Does there exist a graph H such that H2 = G?

Theorem (Martin Milanič, Oliver Schaudt, Discrete Applied Math,
2013)
The Problem SqR is polynomial for threshold graphs.

Threshold graphs are exactly the (P4 and C4 and 2K2)-free graphs
(V. Chvatal, P. L. Hammer, 1977).

Examples
G1 and G2 are threshold graphs, but only G2 has square roots.
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In what follows, we discuss:

1 Which König-Egerváry graphs have square roots?

2 How to compute a square root of a König-Egerváry graph?
3 How to compute all square roots of a König-Egerváry graph?

Example

The graph G2 has G1 as a square root, i.e., G1 ∈
√
G2.

G3 has no square roots, because it has a leaf.

w w w
w w w

G1 w w w
w w w
@
@
@

HHHHHH�
�
�

��
��

��

�
�
�@
@
@

G2 w w w
w w w
�
�
�

�
�
�@
@
@

G3

Figure: König-Egerváry graphs.
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Theorem
If a connected König-Egerváry graph G of order ≥ 3 has a square root,
then G has perfect matchings and a unique maximum independent set.

Example
The graph G2 has G1 as a square root.

G3 has no square roots, because it has a leaf.
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Figure: König-Egerváry graphs.

The converse of theorem above is not necessarily true; e.g., G3.
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Squares, roots and König-Egerváry graphs

Theorem (L & M, Graphs and Combinatorics, 2013)
For a graph H of order n ≥ 2, the following are equivalent:
(i) H2 is a König-Egerváry graph;
(ii) H has a perfect matching consisting of pendant edges.

Corollary
Each square root of a König-Egerváry graph G, if any,

is of the form H0 ◦K1 for some graph H0.
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Figure: König-Egerváry graphs: H = H0 ◦K1 and H2.

Levit & Mandrescu (AU & HIT) Square Roots 19/06 22 / 55



Squares, roots and König-Egerváry graphs

There are König-Egerváry graphs, whose squares are not
König-Egerváry graphs. E.g., every C2n.

There are non-König-Egerváry graphs, whose squares are not
König-Egerváry graphs. E.g., every C2n+1.

Theorem (L & M, Graphs and Combinatorics, 2013)
For a graph H of order n ≥ 2, the following are equivalent:
(i) H2 is a König-Egerváry graph;
(ii) H has a perfect matching consisting of pendant edges.

Corollary
Each square root of a König-Egerváry graph G, if any,

is of the form H0 ◦K1 for some graph H0.
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Simplicial graphs

Definition (G. H. Cheston, E. O. Hare, S. T. Hedetniemi and R. C.
Laskar, Congressus Numer 67, 1988)

A vertex v is simplicial in G if NG (x) is a clique. A simplex is a clique
containing at least one simplicial vertex. G is a simplicial graph if each of
its vertices is either simplicial or adjacent to a simplicial vertex.

Theorem (Cheston et al., Congressus Numer 67, 1988)
If G is a simplicial graph and Q1, ..., Qq are the simplices of G , then
V (G ) = ∪{V (Qi ) : 1 ≤ i ≤ q} and q = α(G ).
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Figure: König-Egerváry graphs: H = H0 ◦K1 and G = H2.
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Square root of a König-Egerváry graph

A vertex v is simplicial in G if its neighborhood NG (v) is a clique.
G is simplicial if each of its vertices is either simplicial or adjacent to
a simplicial vertex.

Theorem
If a König-Egerváry graph G, of order n ≥ 3, has a square root, then
every vertex of its unique maximum independent set, say S0, is simplicial.
Moreover, {NG (x) : x ∈ S0} is an edge clique cover of G [V (G )− S0].
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Square roots of a König-Egerváry graph

Corollary
Each square root of a König-Egerváry graph G, if any,

is of the form H0 ◦K1 for some graph H0.
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If a König-Egerváry graph G, of order n ≥ 3, has a square root, then
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Moreover, {NG (x) : x ∈ S0} is an edge clique cover of G [V (G )− S0].
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Problem (AllSqR)
All Square Roots of a König-Egerváry Graph
Instance: A connected König-Egerváry graph G.
Output: All graphs H such that H2 = G.

Theorem
Problem AllSqR is solvable in

O
((
|E | · |V |+ |V |2

)
+ ((∆(G ) +M(n)) · |V | · per(G ))

)
time, where per(G ) is the number of perfect matchings of G = (V ,E ),
and M(n) is the time complexity of a matrix multiplication for two n · n
matrices.
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Core of a graph

Definition (Levit and Mandrescu, Discrete Applied Math, 2002)

core(G ) is the intersection of all maximum independent sets of G .

The problem of whether core(G ) 6= ∅ is NP-complete
(Endre Boros, M. C. Golumbic, V. E. Levit, Discrete Applied Math,
2002).

Fact
G has a unique maximum independent set if and only if

core(G ) is a maximum independent set.
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Checking whether a K-E graph may have a square root

Testing whether a graph has a unique maximum independent set is
NP-hard (A. Pelc, IEEE Transactions on computers, 1991).
We need to check whether a König-Egerváry graph with perfect
matchings has a unique maximum indep set, and if positive, to find
it.

Lemma
Let G = (V ,E ) be a König-Egerváry graph having a perfect matching,

and v ∈ V . Then the following assertions are true:
(i) v ∈ core(G ) iff G − v is not a König-Egerváry graph;
(ii) one can find core(G ) in O(|V | · |E |+ |V |2) time;
(iii) one can check whether G has a unique maximum independent

set (namely core(G )), and find it, in O(|V | · |E |+ |V |2) time.
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A sketch of an algorithm generating all square roots of a
K-E graph

There is a poly time algorithm finding a maximum matching M in G

that needs O(|E | ·
√
|V |) time (V. V. Vazirani, Combinatorica 1994).

If 2 |M | 6= |V |, i.e., M is not perfect, then G has no square root.

Assume that M is a perfect matching. Hence α (G ) = µ (G ) = |M |.

Since G is a König-Egerváry graph with a perfect matching,

one can find S0 = core(G ) in time O(|V | · |E |+ |V |2).

If α (G ) 6= |S0|, then G has no square root, since it has more than
one maximum independent set.
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Otherwise, we infer that Ω(G ) = {S0} and G = S0 ∗H1.
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One can run an algorithm generating all perfect matchings in the
bipartite graph HB = (S0,V (H1) ,E − E (H1)) with the time
complexity O

(√
|V | · |E (HB )|+ per(HB ) · log |V |

)
(T. Uno, LNCS 2223, 2001).
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In other words, every solution of the equation G = H2 is based on a
choice of a perfect matching of the bipartite graph HB .

Let M0 = {xiyi : 1 ≤ i ≤ |V | /2} be such a perfect matching of HB ,
where S0 = {xi : 1 ≤ i ≤ |V | /2}.
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Figure: H1,H2 are candidates for the equation H2 = G , corresponding to
different perfect matchings of HB , but only H21 = G .
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To define the edge set of the graph H as a function of the perfect
matching M0, we proceed as follows:

keep M0 be such as a part of E (H);

check that for every xkz ∈ E (G )− {xkyk} , 1 ≤ k ≤ |V | /2, there
exists the edge ykz ∈ E (G ), otherwise M0 may not generate a square
root of G ;

build the graph H0 as follows:

V (H0) = V − S0,
E (H0) = {ykz : xkz ∈ E (G )− {xkyk} , 1 ≤ k ≤ |V | /2} ;

if (V ,E (H0) ∪M0)
2 = G , then the graph (V ,E (H0) ∪M0) is a

square root of G , otherwise M0 does not generate a square root.
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Since S0 is the unique maximum independent set of a König-Egerváry
graph G , and, on the other hand, by a Theorem characterizing
König-Egerváry graphs, every matching of G is contained in
(S0,V − S0), one may conclude that the graphs G = S0 ∗H1 and
HB = (S0,V (H1) ,E − E (H1)) have the same perfect matchings.
In summary, testing all the perfect matchings of the bipartite graph
HB one can generate

√
G with

O
((
|E | · |V |+ |V |2

)
+ ((∆(G ) +M(n)) · |V | · per(G ))

)
time complexity.
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Symmetric bipartite graphs

Definition (N. Kakimura, 2008)

A bipartite graph G = (A,B,E ) with |A| = |B | is said to be
symmetric if ajbi ∈ E holds for every aibj ∈ E .

Example
G1 is bipartite and symmetric, while

G2 is bipartite, but not symmetric.
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Figure: Bipartite graphs on the same vertices.
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Definition
Let F = (A,B,E ) be a bipartite graph, such that A = {aj : 1 ≤ j ≤ p}
and B = {bk : 1 ≤ k ≤ q}. The adjacency matrix of F is
Adj(F ) = (xjk )p×q , where xjk = 1 if ajbk ∈ E , and xjk = 0, otherwise.

Example

Adj(F ) =


a1
a2
a3
a4



1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 1 1 1 1

 and M is a maximum matching.
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Figure: "Blue matching" is a maximum matching.
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Definition
Let M be a perfect matching of F = (A,B,E ). The permutation matrix

PM determined by M is: PM (i , j) = 1 if and only if ajbi ∈ M.

Example

Adj(F ) =


b1 b2 b3 b4

a1 1 1 0 0
a2 1 1 1 0
a3 0 1 1 1
a4 0 1 1 1

 =⇒ PM =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0


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Figure: M = {a1b2, a2b3, a3b4, a4b2} is a perfect matching.
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Definition
Let M be a perfect matching of F = (A,B,E ).
The permutation matrix PM determined by M is:

PM (i , j) = 1 if and only if ajbi ∈ M.

Example
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Figure: M = {a1b2, a2b3, a3b4, a4b2} is a perfect matching.
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Definition
Let M is a perfect matching of F = (A,B,E ). The corresponding
adjacency matrix of F with respect to M is Adj(F ,M) = Adj(F ) ∗ PM .

Example

Adj(F ,M) =


1 1 0 0
1 1 1 0
0 1 1 1
0 1 1 1



1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 =


1 0 0 1
1 1 0 1
0 1 1 1
0 1 1 1


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Figure: "Blue matching" is a perfect matching.
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Definition
A perfect matching M of F = (A,B,E ) is symmetric if
Adj(F ,M) = Adj(F ) ∗ PM is symmetric, i.e.,
M =

{
aibτ(i ) : 1 ≤ i ≤ |A|

}
is symmetric if aτ−1(j)bτ(i ) ∈ E holds for

every aibj ∈ E .

Example

Adj(F ,M) =


1 0 1 1
0 1 1 1
1 0 1 0
0 1 0 1



0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 =


1 1 1 0
1 1 0 1
1 0 1 0
0 1 0 1


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Definition
Let F = (A,B,E ) be a bipartite graph, such that A = {aj : 1 ≤ j ≤ p}
and B = {bk : 1 ≤ k ≤ q}. The adjacency matrix of F is
Adj(F ) = (xjk )p×q , where xjk = 1 if ajbk ∈ E and xjk = 0, otherwise.

Definition
Let F = (A,B,E ) be a bipartite graph, and M be a perfect matching of
F . The corresponding adjacency matrix of F with respect to M is
Adj(F ,M) = Adj(F ) ∗ PM .

Clearly, if F = (A,B,E ) has a perfect matching M,then Adj(F ,M) has
xkk = 1, for all k ∈ {1, 2, ..., |A|}.

Definition
Let F = (A,B,E ) be a bipartite graph. A perfect matching M is
symmetric if Adj(F ,M) is symmetric. In other words a perfect matching

M =
{
aibτ(i ) : 1 ≤ i ≤ |A|

}
is symmetric if aτ−1(j)bτ(i ) ∈ E holds for

every aibj ∈ E .
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Definition

A perfect matching M =
{
aibτ(i ) : 1 ≤ i ≤ |A|

}
in F = (A,B,E )

is symmetric if aτ−1(j)bτ(i ) ∈ E holds for every aibj ∈ E .

A bipartite graph may have both symmetric and non-symmetric
perfect matchings.

Example

M1 = {aibi : 1 ≤ i ≤ 5} and M2 = {a1b1, a2b2, a3b4, a4b5, a5b3}
are perfect matchings, but only M1 is symmetric.
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Figure: Both M1 and M2 are perfect matchings of the same bipartite graph.
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Projection with respect to a perfect matching

Definition
The projection of F = (A,B,E ) on A with respect to a perfect matching

M = {aibi : 1 ≤ i ≤ |A|} is a graph P = P(F ,M,A) defined as follows:

V (P) = A and E (P) = {aiaj : aibj ∈ E or ajbi ∈ E}.

Example

The projection P = P(F ,M,A) of F = (A,B,E ) on A

with respect to the perfect matching M = {aibi : 1 ≤ i ≤ 5}.
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A new interpretation of an old result

Theorem (A. Mukhopadhyay, J. Combin. Th., 1967)
A connected graph G on n vertices v1, v2, ..., vn, has a square root if and
only if there exists an edge clique cover Q1, ...,Qn of G such that, for all
i , j ∈ {1, ..., n}, the following hold:
(i) Qi contains vi , for all i ∈ {1, ..., n}; and
(ii) for all i , j ∈ {1, ..., n}, Qi contains vj iff Qj contains vi .

I.e., the fact that G has a square root means that a natural matching
{viQi : 1 ≤ i ≤ n} in the vertex-clique bipartite graph is symmetric.
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Figure: Vertex-clique bipartite graph.
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Square roots of a König-Egerváry graph
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Figure: König-Egerváry graphs: H = H0 ◦K1 and G = H2.

Q1 = {v1, v2, v3} ,Q2 = {v1, v2, v3},
Q3 = {v1, v2, v3, v4} ,Q4 = {v3, v4, v5} ,Q5 = {v4, v5}
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Figure: König-Egerváry graphs: H = H0 ◦K1 and G = H2.
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Theorem (A. Mukhopadhyay, J. Combin. Th., 1967)
A connected graph G on n vertices v1, v2, ..., vn, has a square root if and
only if there exists an edge clique cover Q1, ...,Qn of G such that, for all
i , j ∈ {1, ..., n}, the following hold: (i) vi ∈ Qi , for all i ∈ {1, ..., n}; and
(ii) for all i , j ∈ {1, ..., n}, Qi contains vj iff Qj contains vi .

Theorem
If a König-Egerváry graph G, of order n ≥ 3, has a square root, then
every vertex of its unique maximum independent set, say S0, is simplicial.
Moreover, {NG (x) : x ∈ S0} is an edge clique cover of G [V (G )− S0].
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Figure: A König-Egerváry graph G and its vertex-clique bipartite graph BC (G ).
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Definition (Double Covering)

Let G = (V ,E ) , V = {v1, v2, ..., vn} , and V̂ = {v̂1, v̂2, ..., v̂n} . The
double covering of G is the bipartite graph B(G ) with the bipartition{
V , V̂

}
and edges vi v̂j and vj v̂i for every edge vivj ∈ E .

Theorem (R. A. Brualdi, F. Harary, Z. Miller, J. Graph Theory, 1980)

B(G ) is connected iff G is connected and non-bipartite.

Theorem (Dragan Marusic, R. Scapellato, N. Zagagha Salvi)

Let A be a g-matrix (a square symmetric (0, 1) matrix with the 0 (zero)
principal diagonal) of order n , and R be a permutation matrix
representing an n-cycle. Then A ∗ R is a g-matrix if and only if A = 0.
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Theorem
Let A be a g-matrix (a square symmetric (0, 1) matrix with the 0 (zero)
principal diagonal) of order n , and R be a permutation matrix
representing an n-cycle. Then A ∗ R is a g-matrix if and only if A = 0 .

Proof.
A Latin Square Sketch of the Proof:
1 ∗ ∗ ∗
∗ 1 ∗ ∗
∗ ∗ 1 ∗
∗ ∗ ∗ 1

=⇒

1 ∗ ∗ 2
2 1 ∗ ∗
∗ 2 1 ∗
∗ ∗ 2 1

=⇒

1 4 3 2
2 1 4 3
3 2 1 4
4 3 2 1

y1 y2 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 0 1 1 1
x4 1 0 1 1

y1 y2 y4 y3
x1 1 1 1 0
x2 1 1 0 1
x3 0 1 1 1
x4 1 0 1 1
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Theorem
If F = (A,B,E ) has symmetric perfect matchings and twins,

then it has at least two symmetric perfect matchings.

Proof.
Let M = {aibi : 1 ≤ i ≤ q} be a symmetric perfect matching of F ,
and bj , bk be twins.

Then the columns of the matrix Adj(F ,M) ,
corresponding to bj and bk , are identical.

Thus interchanging these two columns leaves the matrix symmetric.

Hence the principal diagonal of the new matrix defines another perfect
matching, that is symmetric, as well.
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Remark
If F = (A,B,E ) has no twins, then it may have more than one symmetric
perfect matching.

Example

G = (A,B,E ) has no twins, while the perfect matchings

M1 = {aibi : 1 ≤ i ≤ 4},
M2 = {a1b2, a2b1, a3b4, a4b3}
M3 = {a1b3, a2b4, a3b1, a4b2} are symmetric.
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Figure: A bipartite graph G = (A,B,E ) and three of its perfect matchings.
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Perm


1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

 = 9

1 y1 y2 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 0 1 1 1
x4 1 0 1 1

2 y1 y2 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 0 1 1 1
x4 1 0 1 1

2 y1 y2 y4 y3
x1 1 1 1 0
x2 1 1 0 1
x3 0 1 1 1
x4 1 0 1 1
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4 y1 y2 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 0 1 1 1
x4 1 0 1 1

4 y2 y3 y4 y1
x1 1 0 1 0
x2 1 1 0 1
x3 1 1 1 1
x4 0 1 1 1

5 y1 y2 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 0 1 1 1
x4 1 0 1 1

5 y2 y1 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 1 0 1 1
x4 0 1 1 1

6 y1 y2 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 0 1 1 1
x4 1 0 1 1

6 y2 y1 y4 y3
x1 1 1 1 0
x2 1 1 0 1
x3 1 0 1 1
x4 0 1 1 1
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4 y1 y2 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 0 1 1 1
x4 1 0 1 1

4 y2 y3 y4 y1
x1 1 0 1 0
x2 1 1 0 1
x3 1 1 1 1
x4 0 1 1 1

5 y1 y2 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 0 1 1 1
x4 1 0 1 1

5 y2 y1 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 1 0 1 1
x4 0 1 1 1

6 y1 y2 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 0 1 1 1
x4 1 0 1 1

6 y2 y1 y4 y3
x1 1 1 1 0
x2 1 1 0 1
x3 1 0 1 1
x4 0 1 1 1
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4 y1 y2 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 0 1 1 1
x4 1 0 1 1

4 y2 y3 y4 y1
x1 1 0 1 0
x2 1 1 0 1
x3 1 1 1 1
x4 0 1 1 1

5 y1 y2 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 0 1 1 1
x4 1 0 1 1

5 y2 y1 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 1 0 1 1
x4 0 1 1 1

6 y1 y2 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 0 1 1 1
x4 1 0 1 1

6 y2 y1 y4 y3
x1 1 1 1 0
x2 1 1 0 1
x3 1 0 1 1
x4 0 1 1 1
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7 y1 y2 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 0 1 1 1
x4 1 0 1 1

7 y4 y1 y2 y3
x1 1 1 1 0
x2 0 1 1 1
x3 1 0 1 1
x4 1 1 0 1

8 y1 y2 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 0 1 1 1
x4 1 0 1 1

8 y4 y3 y2 y1
x1 1 0 1 1
x2 0 1 1 1
x3 1 1 1 0
x4 1 1 0 1

9 y1 y2 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 0 1 1 1
x4 1 0 1 1

9 y4 y2 y3 y1
x1 1 1 0 1
x2 0 1 1 1
x3 1 1 1 0
x4 1 0 1 1

Perm


1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

 = 9 Sym


1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

 = 3
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7 y1 y2 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 0 1 1 1
x4 1 0 1 1

7 y4 y1 y2 y3
x1 1 1 1 0
x2 0 1 1 1
x3 1 0 1 1
x4 1 1 0 1

8 y1 y2 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 0 1 1 1
x4 1 0 1 1

8 y4 y3 y2 y1
x1 1 0 1 1
x2 0 1 1 1
x3 1 1 1 0
x4 1 1 0 1

9 y1 y2 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 0 1 1 1
x4 1 0 1 1

9 y4 y2 y3 y1
x1 1 1 0 1
x2 0 1 1 1
x3 1 1 1 0
x4 1 0 1 1

Perm


1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

 = 9 Sym


1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

 = 3
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7 y1 y2 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 0 1 1 1
x4 1 0 1 1

7 y4 y1 y2 y3
x1 1 1 1 0
x2 0 1 1 1
x3 1 0 1 1
x4 1 1 0 1

8 y1 y2 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 0 1 1 1
x4 1 0 1 1

8 y4 y3 y2 y1
x1 1 0 1 1
x2 0 1 1 1
x3 1 1 1 0
x4 1 1 0 1

9 y1 y2 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 0 1 1 1
x4 1 0 1 1

9 y4 y2 y3 y1
x1 1 1 0 1
x2 0 1 1 1
x3 1 1 1 0
x4 1 0 1 1
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7 y1 y2 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 0 1 1 1
x4 1 0 1 1

7 y4 y1 y2 y3
x1 1 1 1 0
x2 0 1 1 1
x3 1 0 1 1
x4 1 1 0 1

8 y1 y2 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 0 1 1 1
x4 1 0 1 1

8 y4 y3 y2 y1
x1 1 0 1 1
x2 0 1 1 1
x3 1 1 1 0
x4 1 1 0 1

9 y1 y2 y3 y4
x1 1 1 0 1
x2 1 1 1 0
x3 0 1 1 1
x4 1 0 1 1

9 y4 y2 y3 y1
x1 1 1 0 1
x2 0 1 1 1
x3 1 1 1 0
x4 1 0 1 1

Perm


1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

 = 9 Sym


1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

 = 3
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An induced matching in a graph G is a matching M where no two
edges of M are joined by an edge.

Every induced macthing in a bipartite graph is symmetric as well.

Consequently, the size of a maximum symmetric matching is
greater or equal to the size of a maximum induced matching.
The problem of finding a maximum induced matching is NP-hard,
even for bipartite graphs (K. Cameron, Discrete Applied Math, 1989;
L. J. Stockmeyer and V. V. Vazirani, Inform. Proc. Letters, 1982).

Example
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Figure: "Blue matchings" are induced matchings.
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So Much for Today, but ...

Problem
Estimate the number of symmetric perfect matchings of a balanced
bipartite graph.

Problem
Find the size of a maximum symmetric matching of a bipartite graph.

Problem
Given a balanced bipartite graph without twins and a symmetric perfect
matching, find another symmetric perfect macthing, if any.

Conjecture
All square-roots of a König-Egerváry graph G are isomorphic.
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