All Square Roots of a König-Egerváry Graph

Vadim E. Levit & Eugen Mandrescu

Ariel University, Israel & Holon Institute of Technology, Israel

June 16-19, 2015

Algorithmic Graph Theory on the Adriatic Coast 2015 Koper, Slovenia

• Some definitions : independent sets, matchings

イロト イ団ト イヨト イヨト

- Some definitions : independent sets, matchings
- Ø König-Egerváry graphs

- ∢ ศ⊒ ▶

- 4 3 6 4 3 6

- Some definitions : independent sets, matchings
- König-Egerváry graphs
- **O** Square of graphs

3 🕨 🖌 3

- Some definitions : independent sets, matchings
- König-Egerváry graphs
- Square of graphs
- Square-roots of graphs

- Some definitions : independent sets, matchings
- König-Egerváry graphs
- Square of graphs
- Square-roots of graphs
- Some old results

- Some definitions : independent sets, matchings
- König-Egerváry graphs
- Square of graphs
- Square-roots of graphs
- Some old results
- Our findings ...

- Some definitions : independent sets, matchings
- König-Egerváry graphs
- Square of graphs
- Square-roots of graphs
- Some old results
- Our findings ...

Some definitions: independent sets

Figure: *G* has $\alpha(G) = |\{a, b, c, y\}| = 4$.

Definition

An independent or a stable set is a set of pairwise non-adjacent vertices. The independence number or the stability number $\alpha(G)$ of G is the maximum cardinality of an independent set in G.

Some definitions: independent sets

Figure: *G* has $\alpha(G) = |\{a, b, c, y\}| = 4$.

Definition

An independent or a stable set is a set of pairwise non-adjacent vertices. The independence number or the stability number $\alpha(G)$ of G is the maximum cardinality of an independent set in G.

Example

 $\{a\}, \{a, b\}, \{a, b, x\}, \{a, b, c, y\} \text{ are independent sets of } G. \\ \{a, b, c, x\}, \{a, b, c, y\} \text{ are maximum independent sets, hence } \alpha(G) = 4.$

Some definitions: matchings and matching number

Definition

A matching in G is a set of non-incident edges.

The matching number $\mu(G)$ of G is the maximum size of a matching in G. A matching covering all the vertices is called perfect.

Some definitions: matchings and matching number

Definition

A matching in G is a set of non-incident edges.

The matching number $\mu(G)$ of G is the maximum size of a matching in G. A matching covering all the vertices is called perfect.

Example

 $\begin{array}{l} \{a_1a_2\} \text{ is a maximum matching in } \mathcal{K}_3, \text{ hence } \mu(\mathcal{K}_3) = 1 \\ \{v_1v_2, v_3v_4\} \text{ is maximum matching in } \mathcal{C}_5, \text{ hence } \mu(\mathcal{C}_5) = 2 \\ \{t_1t_2, t_3t_4, t_5t_5\} \text{ is maximum matching in } \mathcal{G}, \text{ hence } \mu(\mathcal{G}) = 3 \end{array}$

Figure: Only G has perfect matchings; e.g., $M = \{t_1 t_3, t_2 t_4, t_5 t_6\}$.

Some definitions: König-Egerváry graphs

Remark

 $\lfloor |V|/2 \rfloor + 1 \leq \alpha(G) + \mu(G) \leq |V|$ hold for every graph G = (V, E).

- 4 @ ▶ 4 @ ▶ 4 @ ▶

Some definitions: König-Egerváry graphs

Remark $\lfloor |V|/2 \rfloor + 1 \le \alpha(G) + \mu(G) \le |V|$ hold for every graph G = (V, E). Definition (R. W. Deming (1979), F. Sterboul (1979)) G = (V, E) is a König-Egerváry graph if $\alpha(G) + \mu(G) = |V|$.

イロト イポト イヨト イヨト

Some definitions: König-Egerváry graphs

Figure: G_1 is a König-Egerváry graph, since $\alpha(G_1) + \mu(G_1) = 7 = |V(G_1)|$, while G_2 is **not** a König-Egerváry graph, as $\alpha(G_2) + \mu(G_2) = 4 < 5 = |V(G_2)|$.

Theorem (D. König (1931), E. Egerváry (1931))				
	Each bipartite graph	G = (V, E) satisfies	$\alpha(G) + \mu(G) = V .$	
	Levit & Mandrescu (AU & HIT)	Square Roots	19/06	5 / 55

Notation

If $A \cap B = \emptyset$ in G = (V, E), then $(A, B) = \{ab \in E : a \in A, b \in B\}$. If $S \in Ind(G)$ and H = G - S, we write G = S * H.

Notation

If $A \cap B = \emptyset$ in G = (V, E), then $(A, B) = \{ab \in E : a \in A, b \in B\}$. If $S \in Ind(G)$ and H = G - S, we write G = S * H.

Theorem (Levit and Mandrescu, Discrete Math. 2003)

For a graph G = (V, E), the following properties are equivalent: (i) G is a König-Egerváry graph; (ii) G = S * H, where $S \in \Omega(G)$ and $|S| \ge \mu(G) = |V - S|$; (iii) G = S * H, where S is an independent set with $|S| \ge |V - S|$ and (S, V - S) contains a matching of size |V - S|.

Figure: By above theorem, part (ii), only *H* is a König-Egerváry graph.

◆□> ◆圖> ◆国> ◆国> 三国

Definition

If $A \cap B = \emptyset$ in G = (V, E), then $(A, B) = \{ab \in E : a \in A, b \in B\}$.

/□ ▶ 《 ⋽ ▶ 《 ⋽

Definition

If
$$A \cap B = \emptyset$$
 in $G = (V, E)$, then $(A, B) = \{ab \in E : a \in A, b \in B\}$

Theorem (Levit and Mandrescu, Discrete Applied Math. 2013)

For a graph G = (V, E), the following properties are equivalent: (i) G is a König-Egerváry graph;

Definition

If
$$A \cap B = \emptyset$$
 in $G = (V, E)$, then $(A, B) = \{ab \in E : a \in A, b \in B\}$

Theorem (Levit and Mandrescu, Discrete Applied Math. 2013)

For a graph G = (V, E), the following properties are equivalent:
(i) G is a König-Egerváry graph;
(ii) each maximum matching is contained in (S*, V - S*) for some maximum independent set S*;

Definition

If
$$A \cap B = \emptyset$$
 in $G = (V, E)$, then $(A, B) = \{ab \in E : a \in A, b \in B\}$

Theorem (Levit and Mandrescu, Discrete Applied Math. 2013)

For a graph G = (V, E), the following properties are equivalent:
(i) G is a König-Egerváry graph;
(ii) each maximum matching is contained in (S*, V - S*) for some maximum independent set S*;
(iii) each maximum matching is contained in (S, V - S) for every maximum independent set S.

Definition

If
$$A \cap B = \emptyset$$
 in $G = (V, E)$, then $(A, B) = \{ab \in E : a \in A, b \in B\}$

Theorem (Levit and Mandrescu, Discrete Applied Math. 2013)

For a graph G = (V, E), the following properties are equivalent:
(i) G is a König-Egerváry graph;
(ii) each maximum matching is contained in (S*, V - S*) for some maximum independent set S*;
(iii) each maximum matching is contained in (S, V - S) for every maximum independent set S.

$$S = \{x, y\}$$

$$M = \{ac, yb\}$$

$$G \xrightarrow{x} f \xrightarrow{y} f \xrightarrow{g} h$$

$$H \xrightarrow{y} h$$

$$H \xrightarrow{y$$

• A König-Egerváry graph G = S * H

19/06 8 / 55

· · · · · · · ·

Corona of graphs

Definition

The **corona** of the graphs X and $\{H_i : 1 \le i \le n\}$ is the graph

 $G = X \circ \{H_1, H_2, ..., H_n\}$ obtained by joining each $v_i \in V(X)$ to all the vertices of H_i , where $V(X) = \{v_i : 1 \le i \le n\}$.

If every $H_i = H$, we write $G_1 = X \circ H$.

• $G = H \circ K_1$ is a König-Egerváry graph with a perfect matching.

Square of a graph

Definition

The square of the graph G = (V, E) is the graph $G^2 = (V, U)$, where $xy \in U$ if and only if $x \neq y$ and $dist_G(x, y) \leq 2$.

(日) (同) (三) (三)

Square of a graph

Definition

The square of the graph G = (V, E) is the graph $G^2 = (V, U)$, where $xy \in U$ if and only if $x \neq y$ and $dist_G(x, y) \leq 2$.

Figure: Non-isomorphic graphs having the same square.

Example $C_4^2 = K_{1,3}^2 = (K_3 + e)^2 = K_4^2 = K_4.$

A B F A B F

Square of a graph

Definition

The square of the graph G = (V, E) is the graph $G^2 = (V, U)$, where $xy \in U$ if and only if $x \neq y$ and $dist_G(x, y) \leq 2$.

Figure: Non-isomorphic graphs having the same square.

Example

$$C_4^2 = K_{1,3}^2 = (K_3 + e)^2 = K_4^2 = K_4.$$

Remark

(i) There is no G such that $G^2 = C_4$. (ii) If one of the n vertices of G has n - 1 neighbors, then $G^2 = K_n$.

Definition

```
If there is some graph H such that H^2 = G,
```

```
then H is called a square root of G, i.e., H \in \sqrt{G}.
```

• A graph may have **more** than one square root.

• There are graphs having **no** square root.

Example

 P_3 has **no** square root, i.e., the equation $H^2 = P_3$ has **no** solution.

< ロ > < 同 > < 三 > < 三

Theorem (A. Mukhopadhyay, J. Combin. Th., 1967)

A connected graph *G* on *n* vertices $v_1, v_2, ..., v_n$, has a square root **if and** only if there exists an edge clique cover $Q_1, ..., Q_n$ of *G* such that, for all $i, j \in \{1, ..., n\}$, the following hold:

(i) Q_i contains v_i , for all $i \in \{1, ..., n\}$; and

(ii) for all $i, j \in \{1, ..., n\}$, Q_i contains v_j iff Q_j contains v_i .

イロト 不得下 イヨト イヨト

Some old results

Theorem (A. Mukhopadhyay, J. Combin. Th., 1967)

A connected graph *G* on *n* vertices $v_1, v_2, ..., v_n$, has a square root if and only if there exists an edge clique cover $Q_1, ..., Q_n$ of *G* such that, for all $i, j \in \{1, ..., n\}$, the following hold:

(i) Q_i contains v_i , for all $i \in \{1, ..., n\}$; and

(ii) for all $i, j \in \{1, ..., n\}$, Q_i contains v_j iff Q_j contains v_i .

Example

The edge clique cover Q_1 , Q_2 , Q_3 , Q_4 satisfies (i) and (ii).

$$G \xrightarrow{v_1}_{v_4} \xrightarrow{v_2}_{v_3} Q_1 = \{v_1, v_3\} \qquad Q_2 = \{v_2, v_4\}$$
$$Q_3 = \{v_1, v_3, v_4\} \qquad Q_4 = \{v_2, v_3, v_4\}$$
$$P_4 \text{ is a square root of } G$$

Theorem (D.J. Ross and F. Harary, Bell System Tech. J., 1960)

Tree roots of a graph, when they exist, are unique up to isomorphism.

Theorem (Y. L. Lin, S. Skiena, LNCS 557, 1991)

There is an O(m) time algorithm for finding the square roots of a planar graph.

Theorem (Y. L. Lin, S. Skiena, LNCS 557, 1991)

The tree square root of a graph can be found in O(m) time, where m denotes the number of edges of the given tree square root.

Theorem (Y. L. Lin, S. Skiena, SIAM J. of Discrete Math, 1995)

There is a linear time algorithm to recognize squares G^2 of graphs, where G is a tree.

Levit & Mandrescu (AU & HIT)

Problem (SqR)

A Square Root of a Graph

Instance: A graph G.

Question: Does there exist a graph H such that $H^2 = G$?

Theorem (R. Motwani, M. Sudan, Discrete Applied Math, 1994)

Problem SqR is NP-complete.

Theorem (L.C. Lau, D.G. Corneil, SIAM J. Discrete Math, 2004)

The Problem **SqR** remains **NP**-complete for chordal graphs.

Theorem (Martin Milanič, Oliver Schaudt, Discrete Applied Math, 2013)

The Problem **SqR** is polynomial for trivially perfect and threshold graphs.

Problem (SqR)

A Square Root of a Graph

Instance: A graph **G**.

Question: Does there exist a graph H such that $H^2 = G$?

Theorem (R. Motwani, M. Sudan, Discrete Applied Math, 1994)

Problem SqR is NP-complete.

Theorem (L.C. Lau, D.G. Corneil, SIAM J. Discrete Math, 2004)

The Problem SqR remains NP-complete for chordal graphs.

• A chordal graph is one whose cycles on $q \ge 4$ vertices have a chord.

19/06

16 / 55

Levit & Mandrescu (AU & HIT)

Problem (SqR)

A Square Root of a Graph

Instance: A graph G.

Question: Does there exist a graph H such that $H^2 = G$?

Theorem (Martin Milanič, Oliver Schaudt, Discrete Applied Math, 2013)

The Problem **SqR** is polynomial for trivially perfect graphs.

- G is a **trivially perfect graph** if each of its induced subgraphs H has $\alpha(H)$ maximal cliques (M. C. Golumbic, Discrete Math. 1978).
- They are exactly the $(P_4 \text{ and } C_4)$ -free graphs (Golumbic, DM 1978).

Threshold graphs

Definition

A graph G = (V, E) is called threshold (V. Chvatal and P. L. Hammer, 1977) if it can be obtained from K_1 by iterating, in any order, the operations of adding a new vertex which is connected to no other vertex (i.e., an isolated vertex) or every other vertex (i.e., a dominating vertex).

Threshold graphs

Definition

A graph G = (V, E) is called threshold (V. Chvatal and P. L. Hammer, 1977) if it can be obtained from K_1 by iterating, in any order, the operations of adding a new vertex which is connected to no other vertex (i.e., an isolated vertex) or every other vertex (i.e., a dominating vertex).

Example

 $K_{1,n}$ and K_n are threshold graphs.
Definition

A graph G = (V, E) is called threshold (V. Chvatal and P. L. Hammer, 1977) if it can be obtained from K_1 by iterating, in any order, the operations of adding a new vertex which is connected to no other vertex (i.e., an isolated vertex) or every other vertex (i.e., a dominating vertex).

Example

Definition

A graph G = (V, E) is called threshold (V. Chvatal and P. L. Hammer, 1977) if it can be obtained from K_1 by iterating, in any order, the operations of adding a new vertex which is connected to no other vertex (i.e., an isolated vertex) or every other vertex (i.e., a dominating vertex).

Example

 $K_{1,n}$ and K_n are threshold graphs.

2

Definition

A graph G = (V, E) is called threshold (V. Chvatal and P. L. Hammer, 1977) if it can be obtained from K_1 by iterating, in any order, the operations of adding a new vertex which is connected to no other vertex (i.e., an isolated vertex) or every other vertex (i.e., a dominating vertex).

Example

Definition

A graph G = (V, E) is called threshold (V. Chvatal and P. L. Hammer, 1977) if it can be obtained from K_1 by iterating, in any order, the operations of adding a new vertex which is connected to no other vertex (i.e., an isolated vertex) or every other vertex (i.e., a dominating vertex).

Example

Definition

A graph G = (V, E) is called threshold (V. Chvatal and P. L. Hammer, 1977) if it can be obtained from K_1 by iterating, in any order, the operations of adding a new vertex which is connected to no other vertex (i.e., an isolated vertex) or every other vertex (i.e., a dominating vertex).

Example

Definition

A graph G = (V, E) is called threshold (V. Chvatal and P. L. Hammer, 1977) if it can be obtained from K_1 by iterating, in any order, the operations of adding a new vertex which is connected to no other vertex (i.e., an isolated vertex) or every other vertex (i.e., a dominating vertex).

Example

 $K_{1,n}$ and K_n are threshold graphs.

Figure: G is a threshold graph : 4 and 6 are dominating vertices.

Problem (SqR)

A Square Root of a Graph

Instance: A graph G. **Question:** Does there exist a graph H such that $H^2 = G$?

Theorem (Martin Milanič, Oliver Schaudt, Discrete Applied Math, 2013)

The Problem SqR is polynomial for threshold graphs.

 Threshold graphs are exactly the (P₄ and C₄ and 2K₂)-free graphs (V. Chvatal, P. L. Hammer, 1977).

Examples

• Which König-Egerváry graphs have square roots?

• Which König-Egerváry graphs have square roots?

How to compute a square root of a König-Egerváry graph?

- Which König-Egerváry graphs have square roots?
- When to compute a square root of a König-Egerváry graph?
- How to compute all square roots of a König-Egerváry graph?

- Which König-Egerváry graphs have square roots?
- When to compute a square root of a König-Egerváry graph?
- Solution How to compute all square roots of a König-Egerváry graph?

- Which König-Egerváry graphs have square roots?
- Outputs to compute a square root of a König-Egerváry graph?
- Item to compute all square roots of a König-Egerváry graph?

Theorem

If a connected König-Egerváry graph G of order ≥ 3 has a square root,

then G has perfect matchings and a unique maximum independent set.

Example

The graph G_2 has G_1 as a square root.

 G_3 has no square roots, because it has a leaf.

Figure: König-Egerváry graphs.

• The converse of theorem above is **not** necessarily true; e.g., G_3 .

Image: Image:

Squares, roots and König-Egerváry graphs

Theorem (L & M, Graphs and Combinatorics, 2013)

For a graph H of order $n \ge 2$, the following are equivalent:

(i) H² is a König-Egerváry graph;

(ii) *H* has a perfect matching consisting of pendant edges.

Corollary

Each square root of a König-Egerváry graph G, if any,

is of the form $H_0 \circ K_1$ for some graph H_0 .

Squares, roots and König-Egerváry graphs

- There are König-Egerváry graphs, whose squares are not König-Egerváry graphs. E.g., every C_{2n}.
- There are non-König-Egerváry graphs, whose squares are not König-Egerváry graphs. E.g., every C_{2n+1}.

Theorem (L & M, Graphs and Combinatorics, 2013)

For a graph H of order $n \ge 2$, the following are equivalent:

(i) H² is a König-Egerváry graph;

(ii) *H* has a perfect matching consisting of pendant edges.

Corollary

Each square root of a König-Egerváry graph G, if any,

is of the form $H_0 \circ K_1$ for some graph H_0 .

Simplicial graphs

Definition (G. H. Cheston, E. O. Hare, S. T. Hedetniemi and R. C. Laskar, Congressus Numer 67, 1988)

A vertex v is simplicial in G if $N_G(x)$ is a **clique**. A **simplex** is a clique containing at least one simplicial vertex. G is a **simplicial graph** if each of its vertices is either simplicial or adjacent to a simplicial vertex.

Theorem (Cheston et al., Congressus Numer 67, 1988)

If G is a simplicial graph and $Q_1, ..., Q_q$ are the simplices of G, then $V(G) = \cup \{V(Q_i) : 1 \le i \le q\}$ and $q = \alpha(G)$.

Square root of a König-Egerváry graph

- A vertex v is simplicial in G if its neighborhood $N_G(v)$ is a clique.
- *G* is **simplicial** if each of its vertices is either simplicial or adjacent to a simplicial vertex.

Theorem

If a König-Egerváry graph G, of order $n \ge 3$, has a square root, then every vertex of its unique maximum independent set, say S_0 , is simplicial. Moreover, $\{N_G(x) : x \in S_0\}$ is an edge clique cover of $G[V(G) - S_0]$.

Figure: König-Egerváry graphs: $H = H_0 \circ K_1$ and $G = H^2$.

Square roots of a König-Egerváry graph

Corollary

Each square root of a König-Egerváry graph G, if any,

is of the form $H_0 \circ K_1$ for some graph H_0 .

Theorem

If a König-Egerváry graph G, of order $n \ge 3$, has a square root, then every vertex of its unique maximum independent set, say S_0 , is simplicial. Moreover, $\{N_G(x) : x \in S_0\}$ is an edge clique cover of $G[V(G) - S_0]$.

Problem (AllSqR)

All Square Roots of a König-Egerváry Graph **Instance:** A connected König-Egerváry graph G. **Output:** All graphs H such that $H^2 = G$.

Theorem

Problem AllSqR is solvable in

$$O\left(\left(\left|E|\cdot|V|+|V|^2\right)+\left(\left(\Delta(G)+M(n)\right)\cdot|V|\cdot per(G)\right)\right)$$

time, where per(G) is the number of perfect matchings of G = (V, E), and M(n) is the time complexity of a matrix multiplication for two $n \cdot n$ matrices.

Core of a graph

Definition (Levit and Mandrescu, Discrete Applied Math, 2002)

core(G) is the intersection of all maximum independent sets of G.

The problem of whether core(G) ≠ Ø is NP-complete
 (Endre Boros, M. C. Golumbic, V. E. Levit, Discrete Applied Math, 2002).

Fact

G has a unique maximum independent set if and only if

core(G) is a maximum independent set.

Checking whether a K-E graph may have a square root

- Testing whether a graph has a unique maximum independent set is NP-hard (A. Pelc, IEEE Transactions on computers, 1991).
- We need to check whether a König-Egerváry graph with perfect matchings has a unique maximum indep set, and if positive, to find it.

Lemma

Let G = (V, E) be a König-Egerváry graph having a **perfect matching**, and $v \in V$. Then the following assertions are true: (i) $v \in \operatorname{core}(G)$ iff G - v is **not** a König-Egerváry graph; (ii) one can find $\operatorname{core}(G)$ in $O(|V| \cdot |E| + |V|^2)$ time; (iii) one can check whether G has a **unique** maximum independent set (namely $\operatorname{core}(G)$), and find it, in $O(|V| \cdot |E| + |V|^2)$ time.

・ロン ・四 ・ ・ ヨン ・ ヨン

- There is a poly time algorithm finding a maximum matching *M* in *G* that needs O(|E| · √|V|) time (V. V. Vazirani, Combinatorica 1994).
- If $2|M| \neq |V|$, i.e., *M* is **not** perfect, then *G* has **no** square root.
- Assume that *M* is a perfect matching. Hence $\alpha(G) = \mu(G) = |M|$.
- Since G is a König-Egerváry graph with a perfect matching, one can find $S_0 = \operatorname{core}(G)$ in time $O(|V| \cdot |E| + |V|^2)$.
- If $\alpha(G) \neq |S_0|$, then G has no square root, since it has more than one maximum independent set.

イロト イポト イヨト イヨト

• Otherwise, we infer that $\Omega(G) = \{S_0\}$ and $G = S_0 * H_1$.

• One can run an algorithm generating all perfect matchings in the bipartite graph $H_B = (S_0, V(H_1), E - E(H_1))$ with the time complexity $O\left(\sqrt{|V|} \cdot |E(H_B)| + per(H_B) \cdot \log |V|\right)$ (T. Uno, LNCS **2223**, 2001).

- In other words, every solution of the equation $G = H^2$ is based on a choice of a perfect matching of the bipartite graph H_B .
- Let $M_0 = \{x_i y_i : 1 \le i \le |V|/2\}$ be such a perfect matching of H_B , where $S_0 = \{x_i : 1 \le i \le |V|/2\}$.

Figure: H_1 , H_2 are candidates for the equation $H^2 = G$, corresponding to different perfect matchings of H_B , but only $H_1^2 = G$.

To define the edge set of the graph H as a function of the perfect matching M_0 , we proceed as follows:

- keep M_0 be such as a part of E(H);
- check that for every $x_k z \in E(G) \{x_k y_k\}, 1 \le k \le |V|/2$, there exists the edge $y_k z \in E(G)$, otherwise M_0 may not generate a square root of G;
- build the graph H_0 as follows:

$$V(H_0) = V - S_0,$$

$$E(H_0) = \{y_k z : x_k z \in E(G) - \{x_k y_k\}, 1 \le k \le |V|/2\};$$

• if $(V, E(H_0) \cup M_0)^2 = G$, then the graph $(V, E(H_0) \cup M_0)$ is a square root of G, otherwise M_0 does not generate a square root.

- Since S_0 is the unique maximum independent set of a König-Egerváry graph G, and, on the other hand, by a Theorem characterizing König-Egerváry graphs, every matching of G is contained in $(S_0, V S_0)$, one may conclude that the graphs $G = S_0 * H_1$ and $H_B = (S_0, V(H_1), E E(H_1))$ have the same perfect matchings.
- In summary, testing all the perfect matchings of the bipartite graph H_B one can generate \sqrt{G} with

$$O\left(\left(\left|E|\cdot|V|+|V|^2\right)+\left(\left(\Delta(G)+M(n)\right)\cdot|V|\cdot per(G)\right)\right)$$

time complexity.

Symmetric bipartite graphs

Definition (N. Kakimura, 2008)

A bipartite graph G = (A, B, E) with |A| = |B| is said to be

symmetric if $a_i b_i \in E$ holds for every $a_i b_j \in E$.

Example

 G_1 is bipartite and symmetric, while

 G_2 is bipartite, but not symmetric.

Figure: Bipartite graphs on the same vertices.

Image: Image:

- 4 3 6 4 3 6

Let F = (A, B, E) be a bipartite graph, such that $A = \{a_j : 1 \le j \le p\}$ and $B = \{b_k : 1 \le k \le q\}$. The **adjacency matrix** of F is $Adj(F) = (x_{jk})_{p \times q}$, where $x_{jk} = 1$ if $a_j b_k \in E$, and $x_{jk} = 0$, otherwise.

Example

$$Adj(F) = \begin{cases} a_1 \\ a_2 \\ a_3 \\ a_4 \end{cases} \begin{pmatrix} \mathbf{1} & 1 & 0 & 0 & 0 \\ 1 & 1 & \mathbf{1} & 0 & 0 \\ 0 & 1 & 1 & \mathbf{1} & 0 \\ 0 & \mathbf{1} & 1 & \mathbf{1} & 1 \end{pmatrix} \text{ and } M \text{ is a maximum matching.}$$

Figure: "Blue matching" is a maximum matching.

Levit & Mandrescu (AU & HIT)

F

Square Roots

Let *M* be a perfect matching of F = (A, B, E). The **permutation matrix**

 P_M determined by M is: $P_M(i,j) = 1$ if and only if $a_j b_i \in M$.

Figure: $M = \{a_1b_2, a_2b_3, a_3b_4, a_4b_2\}$ is a perfect matching.

Let *M* be a perfect matching of F = (A, B, E). The **permutation matrix** P_M determined by *M* is:

 $P_M(i,j) = 1$ if and only if $a_j b_i \in M$.

Example $Adj(F) = \begin{array}{c} a_1 \\ a_2 \\ a_3 \\ a_4 \end{array} \begin{pmatrix} \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} \end{array} \end{pmatrix} \Longrightarrow P_M = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \end{pmatrix}$ F a_1 an a₃ aл

Figure: $M = \{a_1b_2, a_2b_3, a_3b_4, a_4b_2\}$ is a **perfect matching**.

Let *M* is a perfect matching of F = (A, B, E). The corresponding adjacency matrix of *F* with respect to *M* is $Adj(F, M) = Adj(F) * P_M$.

Example

$$Adj(F, M) = \begin{pmatrix} \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} \end{pmatrix}$$

Figure: "Blue matching" is a perfect matching.

Levit & Mandrescu (AU & HIT)

Square Roots

A perfect matching M of F = (A, B, E) is symmetric if $Adj(F, M) = Adj(F) * P_M$ is symmetric, i.e., $M = \left\{ a_i b_{\tau(i)} : 1 \le i \le |A| \right\}$ is symmetric if $a_{\tau^{-1}(j)} b_{\tau(i)} \in E$ holds for every $a_i b_j \in E$.

Levit & Mandrescu (AU & HIT)

Square Roots

19/06 40 / 55

Let F = (A, B, E) be a bipartite graph, such that $A = \{a_j : 1 \le j \le p\}$ and $B = \{b_k : 1 \le k \le q\}$. The adjacency matrix of F is $Adj(F) = (x_{jk})_{p \times q}$, where $x_{jk} = 1$ if $a_j b_k \in E$ and $x_{jk} = 0$, otherwise.

Definition

Let F = (A, B, E) be a bipartite graph, and M be a perfect matching of F. The corresponding adjacency matrix of F with respect to M is $Adj(F, M) = Adj(F) * P_M$.

Clearly, if F = (A, B, E) has a perfect matching M, then Adj(F, M) has $x_{kk} = 1$, for all $k \in \{1, 2, ..., |A|\}$.

Definition

Let F = (A, B, E) be a bipartite graph. A perfect matching M is symmetric if Adj(F, M) is symmetric. In other words a perfect matching $M = \left\{a_i b_{\tau(i)} : 1 \le i \le |A|\right\}$ is symmetric if $a_{\tau^{-1}(j)} b_{\tau(i)} \in E$ holds for every $a_i b_j \in E$.

A perfect matching $M = \left\{ a_i b_{\tau(i)} : 1 \le i \le |A| \right\}$ in F = (A, B, E)

is symmetric if $a_{\tau^{-1}(j)}b_{\tau(i)} \in E$ holds for every $a_ib_j \in E$.

• A bipartite graph may have both symmetric and non-symmetric perfect matchings.

Example

 $M_1 = \{a_i b_i : 1 \le i \le 5\}$ and $M_2 = \{a_1 b_1, a_2 b_2, a_3 b_4, a_4 b_5, a_5 b_3\}$

are perfect matchings, but only M_1 is symmetric.

Figure: Both M_1 and M_2 are perfect matchings of the same bipartite graph.

イロト イヨト イヨト イヨ

Projection with respect to a perfect matching

Definition

The projection of F = (A, B, E) on A with respect to a perfect matching

 $M = \{a_i b_i : 1 \le i \le |A|\}$ is a graph P = P(F, M, A) defined as follows:

 $V(P) = A \text{ and } E(P) = \{a_i a_j : a_i b_j \in E \text{ or } a_j b_i \in E\}.$

Example

The projection P = P(F, M, A) of F = (A, B, E) on A

with respect to the perfect matching $M = \{a_i b_i : 1 \le i \le 5\}$.

A new interpretation of an old result

Theorem (A. Mukhopadhyay, J. Combin. Th., 1967)

A connected graph *G* on *n* vertices $v_1, v_2, ..., v_n$, has a square root **if and** only if there exists an edge clique cover $Q_1, ..., Q_n$ of *G* such that, for all $i, j \in \{1, ..., n\}$, the following hold:

(i) Q_i contains v_i , for all $i \in \{1, ..., n\}$; and

(ii) for all $i, j \in \{1, ..., n\}$, Q_i contains v_j iff Q_j contains v_i .

I.e., the fact that G has a square root means that a natural matching $\{v_i Q_i : 1 \le i \le n\}$ in the **vertex-clique bipartite graph** is symmetric.

Figure: Vertex-clique bipartite graph.
Square roots of a König-Egerváry graph

Figure: König-Egerváry graphs: $H = H_0 \circ K_1$ and $G = H^2$.

Figure: König-Egerváry graphs: $H = H_0 \circ K_1$ and $G = H^2$.

Theorem (A. Mukhopadhyay, J. Combin. Th., 1967)

A connected graph G on n vertices $v_1, v_2, ..., v_n$, has a square root **if and** only **if** there exists an **edge clique cover** $Q_1, ..., Q_n$ of G such that, for all $i, j \in \{1, ..., n\}$, the following hold: (i) $v_i \in Q_i$, for all $i \in \{1, ..., n\}$; and (ii) for all $i, j \in \{1, ..., n\}$, Q_i contains v_i **iff** Q_i contains v_i .

Theorem

If a König-Egerváry graph G, of order $n \ge 3$, has a square root, then every vertex of its unique maximum independent set, say S_0 , is simplicial. Moreover, $\{N_G(x) : x \in S_0\}$ is an edge clique cover of $G[V(G) - S_0]$.

Figure: A König-Egerváry graph G and its vertex-clique bipartite graph BC(G).

Definition (Double Covering)

Let G = (V, E), $V = \{v_1, v_2, ..., v_n\}$, and $\hat{V} = \{\hat{v}_1, \hat{v}_2, ..., \hat{v}_n\}$. The **double covering** of G is the bipartite graph B(G) with the bipartition $\{V, \hat{V}\}$ and edges $v_i \hat{v}_j$ and $v_j \hat{v}_i$ for every edge $v_i v_j \in E$.

Theorem (R. A. Brualdi, F. Harary, Z. Miller, J. Graph Theory, 1980)

B(G) is connected iff G is connected and non-bipartite.

Theorem (Dragan Marusic, R. Scapellato, N. Zagagha Salvi)

Let A be a g-matrix (a square symmetric (0, 1) matrix with the 0 (zero) principal diagonal) of order n , and R be a permutation matrix representing an n-cycle. Then A * R is a g-matrix if and only if A = 0.

Theorem

Let A be a g-matrix (a square symmetric (0, 1) matrix with the 0 (zero) principal diagonal) of order n, and R be a permutation matrix representing an n-cycle. Then A * R is a g-matrix if and only if A = 0.

Pro	of.														
ΑL	atin	Sq	uar	e Sket	tch	of t	he	Pro	of:						
1	*	*	*		1	*	*	2		1	4	3	2		
*	1	*	*		2	1	*	*		2	1	4	3		
*	*	1	*	\rightarrow	*	2	1	*	\rightarrow	3	2	1	4		
*	*	*	1		*	*	2	1		4	3	2	1		

Theorem

Let A be a g-matrix (a square symmetric (0, 1) matrix with the 0 (zero) principal diagonal) of order n, and R be a permutation matrix representing an n-cycle. Then A * R is a g-matrix if and only if A = 0.

Pro	of.														
ΑL	A Latin Square Sketch of the Proof:														
1	*	*	*		1	*	*	2		1	4	3	2		
*	1	*	*		2	1	*	*		2	1	4	3		
*	*	1	*		*	2	1	*		3	2	1	4		
*	*	*	1		*	*	2	1		4	3	2	1		
_	_	_	_			_	_	_		_	-	_			
			<i>Y</i> 1	y 2	<i>y</i> 3	<i>Y</i> 4		<i>y</i> ₁	y 2	<i>Y</i> 4	. J	/3			
	X	1	1	1	0	1	<i>x</i> ₁	1	1	1		0			
•	X	2	1	1	1	0	<i>x</i> ₂	1	1	0		1			
	X	3	0	1	1	1	<i>X</i> 3	0	1	1		1			
	X	4	1	0	1	1	<i>X</i> 4	1	0	1		1			

Theorem

If F = (A, B, E) has symmetric perfect matchings and twins,

then it has at least two symmetric perfect matchings.

Proof.

Let $M = \{a_i b_i : 1 \le i \le q\}$ be a symmetric perfect matching of F, and b_j , b_k be twins.

Then the columns of the matrix Adj(F, M), corresponding to b_i and b_k , are identical.

Thus interchanging these two columns leaves the matrix symmetric.

Hence the principal diagonal of the new matrix defines another perfect matching, that is symmetric, as well.

Remark

If F = (A, B, E) has no twins, then it may have more than one symmetric perfect matching.

Example

G = (A, B, E) has no twins, while the perfect matchings $M_1 = \{a_i b_i : 1 \le i \le 4\},\$ $M_2 = \{a_1 b_2, a_2 b_1, a_3 b_4, a_4 b_3\}$ $M_3 = \{a_1 b_3, a_2 b_4, a_3 b_1, a_4 b_2\}$ are symmetric.

Figure: A bipartite graph G = (A, B, E) and three of its perfect matchings.

• Perm
$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} = 9$$

Levit & Mandrescu (AU & HIT)

19/06 51 / 55

■ のへで

• Perm
$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} = 9$$

1 $y_1 \quad y_2 \quad y_3 \quad y_4$
 $x_1 \quad 1 \quad 1 \quad 0 \quad 1$
• $x_2 \quad 1 \quad 1 \quad 1 \quad 0$
 $x_3 \quad 0 \quad 1 \quad 1 \quad 1$
 $x_4 \quad 1 \quad 0 \quad 1 \quad 1$

19/06 51 / 55

■ のへで

•
$$Perm \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} = 9$$

1 $y_1 \quad y_2 \quad y_3 \quad y_4$
 $x_1 \quad 1 \quad 1 \quad 0 \quad 1$
• $x_2 \quad 1 \quad 1 \quad 1 \quad 0$
 $x_3 \quad 0 \quad 1 \quad 1 \quad 1$
 $2 \quad y_1 \quad y_2 \quad y_3 \quad y_4 \quad 2 \quad y_1 \quad y_2 \quad y_4 \quad y_3$
 $x_1 \quad 1 \quad 1 \quad 0 \quad 1 \quad x_1 \quad 1 \quad 1 \quad 1 \quad 0$
• $x_2 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad x_1 \quad 1 \quad 1 \quad 1 \quad 0$
• $x_2 \quad 1 \quad 1 \quad 1 \quad 0 \quad x_2 \quad 1 \quad 1 \quad 0 \quad 1$
 $x_3 \quad 0 \quad 1 \quad 1 \quad 1 \quad x_3 \quad 0 \quad 1 \quad 1 \quad 1$
 $x_4 \quad 1 \quad 0 \quad 1 \quad 1 \quad x_4 \quad 1 \quad 0 \quad 1 \quad 1$

19/06 51 / 5!

*Y*1 *Y*2 *Y*3 *Y*4 **y**2 У3 *Y*4 *Y*1 x_1 x_1 *x*₂ *x*₂ *X*3 *X*3 *x*₄ *x*₄

≣▶ ≣ ∽९९ 19/06 52/55

イロト イヨト イヨト イヨト

	4	y_1	y 2	<i>Y</i> 3	<i>Y</i> 4	4	y 2	<i>Y</i> 3	<i>Y</i> 4	y_1
	x_1	1	1	0	1	x_1	1	0	1	0
۲	<i>x</i> ₂	1	1	1	0	<i>x</i> ₂	1	1	0	1
	<i>x</i> 3	0	1	1	1	<i>x</i> 3	1	1	1	1
	<i>x</i> ₄	1	0	1	1	<i>x</i> 4	0	1	1	1
	5	<i>Y</i> 1	y 2	<i>Y</i> 3	<i>Y</i> 4	5	y 2	<i>Y</i> 1	<i>Y</i> 3	<i>Y</i> 4
	5 <i>x</i> 1	у ₁ 1	<i>y</i> 2 1	<i>у</i> з 0	<i>y</i> 4 1	5 <i>x</i> 1	<i>y</i> 2 1	<i>y</i> 1 1	<i>у</i> з 0	<i>y</i> 4 1
•	5 <i>x</i> 1 <i>x</i> 2	y ₁ 1 1	у ₂ 1 1	<i>у</i> 3 0 1	<i>y</i> 4 1 0	5 <i>x</i> 1 <i>x</i> 2	у ₂ 1 1	$egin{array}{c} y_1 \ 1 \ 1 \ 1 \end{array}$	<i>у</i> 3 0 1	<i>y</i> 4 1 0
•	5 <i>x</i> 1 <i>x</i> 2 <i>x</i> 3	y ₁ 1 1 0	y2 1 1 1	уз 0 1 1	<i>y</i> 4 1 0 1	5 <i>x</i> 1 <i>x</i> 2 <i>x</i> 3	y2 1 1 1	y ₁ 1 1 0	y ₃ 0 1 1	y4 1 0 1

19/06 52 / 5

■ のへで

	4	y_1	y 2	<i>Y</i> 3	<i>Y</i> 4	4	y 2	<i>Y</i> 3	<i>Y</i> 4	y_1
	x_1	1	1	0	1	x_1	1	0	1	0
۲	<i>x</i> ₂	1	1	1	0	<i>x</i> ₂	1	1	0	1
	<i>x</i> 3	0	1	1	1	<i>x</i> 3	1	1	1	1
	<i>x</i> ₄	1	0	1	1	<i>x</i> ₄	0	1	1	1
	5	<i>y</i> 1	y 2	<i>y</i> 3	<i>Y</i> 4	5	y 2	<i>y</i> 1	<i>y</i> 3	<i>Y</i> 4
	x_1	1	1	0	1	x_1	1	1	0	1
٩	x_2	1	1	1	0	<i>x</i> ₂	1	1	1	0
	<i>x</i> 3	0	1	1	1	<i>x</i> 3	1	0	1	1
	<i>X</i> 4	1	0	1	1	<i>X</i> 4	0	1	1	1
	6	<i>Y</i> 1	y 2	<i>y</i> 3	<i>Y</i> 4	6	<i>y</i> ₂	<i>y</i> ₁	<i>y</i> 4	<i>y</i> 3
	x_1	1	1	0	1	x_1	1	1	1	0
٥	<i>x</i> ₂	1	1	1	0	<i>x</i> ₂	1	1	0	1
	<i>x</i> 3	0	1	1	1	<i>x</i> 3	1	0	1	1
	<i>x</i> 4	1	0	1	1	<i>X</i> 4	0	1	1	1

19/06 52 / 5

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

	7	y_1	y 2	<i>У</i> 3	<i>Y</i> 4	7	<i>Y</i> 4	<i>Y</i> 1	<i>Y</i> 2	<i>Y</i> 3
	x_1	1	1	0	1	x_1	1	1	1	0
٠	<i>x</i> ₂	1	1	1	0	<i>x</i> ₂	0	1	1	1
	<i>X</i> 3	0	1	1	1	<i>x</i> 3	1	0	1	1
	<i>x</i> 4	1	0	1	1	<i>x</i> 4	1	1	0	1

19/06 53 / 59

	7	y_1	<i>Y</i> 2	<i>Y</i> 3	<i>Y</i> 4	7	<i>Y</i> 4	y_1	<i>Y</i> 2	<i>Y</i> 3
	x_1	1	1	0	1	x_1	1	1	1	0
٩	<i>x</i> ₂	1	1	1	0	<i>x</i> ₂	0	1	1	1
	<i>x</i> 3	0	1	1	1	<i>x</i> 3	1	0	1	1
	<i>x</i> ₄	1	0	1	1	x_4	1	1	0	1
	8	y_1	y 2	<i>Y</i> 3	<i>Y</i> 4	8	<i>Y</i> 4	<i>Y</i> 3	<i>Y</i> 2	<i>y</i> 1
	8 x ₁	$\frac{y_1}{1}$	$\frac{y_2}{1}$	<i>у</i> з 0	<i>y</i> 4 1	8 x ₁	<i>y</i> 4 1	<i>у</i> з 0	у ₂ 1	$\frac{y_1}{1}$
•	8 x ₁ x ₂	y ₁ 1 1	у ₂ 1 1	уз 0 1	<i>y</i> 4 1 0	8 x ₁ x ₂	<i>y</i> 4 1 0	уз 0 1	у ₂ 1 1	y ₁ 1 1
•	8 x ₁ x ₂ x ₃	у ₁ 1 1 0	y2 1 1 1	уз 0 1 1	y4 1 0 1	8 x ₁ x ₂ x ₃	<i>y</i> 4 1 0 1	у ₃ 0 1 1	y2 1 1 1	у ₁ 1 1 0

19/06 53 / 5

■ のへで

	7	y_1	y 2	<i>Y</i> 3	<i>Y</i> 4	7	<i>Y</i> 4	y_1	y 2	<i>У</i> 3
	x_1	1	1	0	1	x_1	1	1	1	0
٠	<i>x</i> ₂	1	1	1	0	<i>x</i> ₂	0	1	1	1
	<i>x</i> 3	0	1	1	1	<i>x</i> 3	1	0	1	1
	<i>x</i> ₄	1	0	1	1	<i>x</i> ₄	1	1	0	1
	8	y_1	y 2	<i>Y</i> 3	<i>Y</i> 4	8	<i>Y</i> 4	<i>Y</i> 3	y 2	<i>y</i> 1
	x_1	1	1	0	1	x_1	1	0	1	1
٠	<i>x</i> ₂	1	1	1	0	<i>x</i> ₂	0	1	1	1
	<i>x</i> 3	0	1	1	1	<i>x</i> 3	1	1	1	0
	<i>X</i> 4	1	0	1	1	<i>X</i> 4	1	1	0	1
	9	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>Y</i> 4	9	<i>y</i> 4	<i>Y</i> 2	<i>y</i> 3	<i>y</i> ₁
	x_1	1	1	0	1	x_1	1	1	0	1
٩	<i>x</i> ₂	1	1	1	0	<i>x</i> ₂	0	1	1	1
	<i>x</i> 3	0	1	1	1	<i>X</i> 3	1	1	1	0
	<i>x</i> 4	1	0	1	1	<i>X</i> 4	1	0	1	1

19/06 53 / 5

■ のへで

- An **induced matching** in a graph *G* is a matching *M* where no two edges of *M* are joined by an edge.
- Every induced macthing in a bipartite graph is symmetric as well.
- Consequently, the size of a **maximum symmetric matching** is greater or equal to the size of a **maximum induced matching**.
- The problem of finding a maximum induced matching is NP-hard, even for bipartite graphs (K. Cameron, Discrete Applied Math, 1989;
 - L. J. Stockmeyer and V. V. Vazirani, Inform. Proc. Letters, 1982).

So Much for Today, but ...

Levit & Mandrescu (AU & HIT)

<ロト </p>

Estimate the number of symmetric perfect matchings of a balanced bipartite graph.

Estimate the number of symmetric perfect matchings of a balanced bipartite graph.

Problem

Find the size of a maximum symmetric matching of a bipartite graph.

Estimate the number of symmetric perfect matchings of a balanced bipartite graph.

Problem

Find the size of a maximum symmetric matching of a bipartite graph.

Problem

Given a balanced bipartite graph without twins and a symmetric perfect matching, find another symmetric perfect macthing, if any.

Estimate the number of symmetric perfect matchings of a balanced bipartite graph.

Problem

Find the size of a maximum symmetric matching of a bipartite graph.

Problem

Given a balanced bipartite graph without twins and a symmetric perfect matching, find another symmetric perfect macthing, if any.

Conjecture

All square-roots of a König-Egerváry graph G are isomorphic.