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Some definitions: independent sets

b X

a u c v y

Figure: G has a(G) = |{a, b, c,y}| = 4.

Definition

An independent or a stable set is a set of pairwise non-adjacent vertices.
The independence number or the stability number a(G) of G is
the maximum cardinality of an independent set in G.

Levit & Mandrescu (AU & HIT) Square Roots



Some definitions: independent sets

a u c v y

Figure: G has a(G) = |{a, b, c,y}| = 4.

Definition

An independent or a stable set is a set of pairwise non-adjacent vertices.
The independence number or the stability number a(G) of G is
the maximum cardinality of an independent set in G.

Example
{a},{a, b},{a b,x},{a b, c,y} are independent sets of G.
{a, b, c,x},{a, b, c,y} are maximum independent sets, hence a(G) = 4.
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Some definitions: matchings and matching number

Definition

A matching in G is a set of non-incident edges.
The matching number y(G) of G is the maximum size of a matching in G.
A matching covering all the vertices is called perfect.
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Some definitions: matchings and matching number

Definition

A matching in G is a set of non-incident edges.
The matching number y(G) of G is the maximum size of a matching in G.
A matching covering all the vertices is called perfect.

{a1a2} is a maximum matching in K3, hence 11(K3) = 1

{vivy, vavs4 } is maximum matching in Cs, hence 11(C5) = 2
{tito, tsts, tsts } is maximum matching in G, hence u(G) =3
an %) V3 to ta te
K3 G G ,
a a3 Vi V4 t1 3 @ts

Figure: Only G has perfect matchings; e.g., M = {t1t3, tots, t5tg }.
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Some definitions: Koénig-Egervary graphs

[[VI/2] +1<a(G)+ u(G) < |V| hold for every graph G = (V, E).
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Some definitions: Koénig-Egervary graphs

[|V| /2] +1<a(G)+ u(G) < |V| hold for every graph G = (V, E).

Definition (R. W. Deming (1979), F. Sterboul (1979)
G = (V,E) is a Kénig—Egervary graph if «(G)+ u(

)
G

)=V,
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Some definitions: Koénig-Egervary graphs

= (V,E).

V| /2] +1<a(G)+ u(G) < |V| hold for every graph G

Definition (R. W. Deming (1979), F. Sterboul (1979))
G = (V,E) is a Kénig—Egervary graph if a(G)+ u(G) =|V|.

b X V2 V4
G1 Go
[ @
a u c v y 2l v Vs

Figure: Gy is a Kénig—Egervary graph, since a(Gy) + 11(Gy)
while G, is not a Kénig—Egervary graph, as a(Gy) + 1u(Gy)

Theorem (D. Konig (1931), E. Egervary (1931))
(V,E) satisfies a(G)+ u(G) =1|V|.

Each bipartite graph G =

Square Roots
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A characterization for Kénig-Egervary graphs

IfFANB=Qin G =(V,E), then (A B) = {abc E:ac A b e B}.
If S€ Ind(G)and H= G — S, we write G = S x H.
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A characterization for Kénig-Egervary graphs

Notation

f ANB=Qin G=(V,E), then (A, B)={abe E:ac A be B}.
If S € Ind(G) and H=G — S, we write G = S* H.

Theorem (Levit and Mandrescu, Discrete Math. 2003)

For a graph G = (V/, E), the following properties are equivalent:
(i) G is a Kénig-Egervéry graph;
(i) G=Sx%H, where S € Q(G) and |S| > u(G) = |V - §|;
(iii) G = S H, where S is an independent set with [S| > |V — S| and
(S, V —S) contains a matching of size |V — S|.

S={xy}eq(G % Y N h
(yben(s) j I AN I fI
w(G)=2<|V-1S5| a b v u

Figure: By above theorem, part (ii), only H is a Kénig-Egervary graph.
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Another characterization of Konig-Egervary graphs

Definition
If ANB=Qin G=(V,E), then (A B)={abc E:ac A bec B}

Levit & Mandrescu (AU & HIT) Square Roots



Another characterization of Konig-Egervary graphs

Definition
If ANB=Qin G=(V,E), then (A,B) ={abe E:a€c A bec B}.

Theorem (Levit and Mandrescu, Discrete Applied Math. 2013)

For a graph G = (V/, E), the following properties are equivalent:
(i) G is a Kénig-Egervéry graph;
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Theorem (Levit and Mandrescu, Discrete Applied Math. 2013)
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Another characterization of Konig-Egervary graphs

Definition
If ANB=Qin G=(V,E), then (A,B) ={abe E:a€c A bec B}.

Theorem (Levit and Mandrescu, Discrete Applied Math. 2013)

For a graph G = (V/, E), the following properties are equivalent:
(i) G is a Kénig-Egervéry graph;
(ii) each maximum matching is contained in (5%, V — S5%)
for some maximum independent set S*;
(iii) each maximum matching is contained in (S, V — S)
for every maximum independent set S.
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Another characterization of Konig-Egervary graphs

Definition

If ANB=Qin G=(V,E), then (A,B) ={abe E:a€c A bec B}.

Theorem (Levit and Mandrescu, Discrete Applied Math. 2013)

For a graph G = (V/, E), the following properties are equivalent:
(i) G is a Kénig-Egervéry graph;
(ii) each maximum matching is contained in (5%, V — S5%)
for some maximum independent set S*;
(iii) each maximum matching is contained in (S, V — S)
for every maximum independent set S.

S={xy} X y fr@® 8 h
M={acyby © c H
a b v u
Figure: M & (S, V(G) — S), hence G is not a Kénig-Egervary graph.

H is a Konig-Egervéry graph.
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o A Konig-Egervary graph G = S« H
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Corona of graphs

Definition
The corona of the graphs X and {H; : 1 </ < n} is the graph
G = X o{Hi, Hy, ..., H,} obtained by joining each v; € V(X) to

all the vertices of H;, where V(X) = {v; : 1 </ < n}.
If every H; = H, we write G; = X o H.

o G = Ho Kjis a Kbnig-Egervary graph with a perfect matching.

X @ @
%1 V2 V3 V4 K3 K 2 P3
K1
G 1 G2
Vi V2 V3 V4 % V2 (%7

Figure: The graphs G = X o Kj and G, = X o {K3, Ko, P3, K1 }.
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Square of a graph

Definition

The square of the graph G = (V, E) is the graph G?> = (V, U),
where xy € U if and only if x # y and distg(x, y) < 2.
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Square of a graph

Definition

The square of the graph G = (V, E) is the graph G? = (V,U),
where xy € U if and only if x # y and distg(x, y) < 2.

<] w1 e N [

Figure: Non-isomorphic graphs having the same square.

Q2 =K = (Ks+e)? =K} = Ka.
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Square of a graph

Definition

The square of the graph G = (V, E) is the graph G? = (V,U),
where xy € U if and only if x # y and distg(x, y) < 2.

<] w1 e N [

Figure: Non-isomorphic graphs having the same square.

Example
2 =Ky = (Ks+e)? = K2 = K.

N

RENEILS

(i) There is no G such that G> = C;.
(ii) If one of the n vertices of G has n — 1 neighbors, then G*> = K,,.

Levit & Mandrescu (AU & HIT) Square Roots 19/06 10 / 55



Square root of a graph

Definition
If there is some graph H such that H> = G,
then H is called a square root of G, i.e., H € \/G.

@ A graph may have more than one square root.

Every H of order n that has a vertex of degree n — 1 is a root of K,. \

@ There are graphs having no square root.

P5 has no square root, i.e., the equation H?> = P3 has no solution.
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Some old results

Theorem (A. Mukhopadhyay, J. Combin. Th., 1967)

A connected graph G on n vertices vi, v, ..., v,, has a square root if and
only if there exists an edge clique cover Q1, ..., @, of G such that, for all
i,j€{1, ..., n}, the following hold:

(i) Qi contains v;, for all i € {1,...,n},; and

(i) for all i,j € {1, ..., n}, Q; contains v; iff Q; contains v;.

41 V2 Q1 ={vi,n} Q ={vw, v}
Ca Q: ={wvz, s} Qs =A{wvs, v}
Va V3
{Q1, @, @3, Q4} is the only edge clique cover of C4

Figure: C4 has no square root: v3 € @ , while v» € Q3.
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Some old results

Theorem (A. Mukhopadhyay, J. Combin. Th., 1967)

A connected graph G on n vertices vi, v, ..., v,, has a square root if and
only if there exists an edge clique cover Q1, ..., @, of G such that, for all
i,j € {1, ... n}, the following hold:

(i) Qi contains v;, for all i € {1,...,n},; and

(i) for all i,j € {1, ..., n}, Q; contains v; iff Q; contains v;.

The edge clique cover Q1, @, Q3, Q4 satisfies (i) and (ii).

41 V2 Q1 ={v1,»3} Q@ ={w, v}
G Q={vi,vs, s} Qs =A{w,v3,vs}
V4 V3

P, is a square root of G
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Some algorithmic results

Theorem (D.J. Ross and F. Harary, Bell System Tech. J., 1960)

Tree roots of a graph, when they exist, are unique up to isomorphism.

Theorem (Y. L. Lin, S. Skiena, LNCS 557, 1991)

There is an O(m) time algorithm for finding the square roots of a planar
graph.

A\

Theorem (Y. L. Lin, S. Skiena, LNCS 557, 1991)

The tree square root of a graph can be found in O(m) time, where m
denotes the number of edges of the given tree square root.

.

Theorem (Y. L. Lin, S. Skiena, SIAM J. of Discrete Math, 1995)

There is a linear time algorithm to recognize squares G° of graphs, where
G is a tree.
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Problem (SqR)

A Square Root of a Graph
Instance: A graph G.
Question: Does there exist a graph H such that H> = G?

Theorem (R. Motwani, M. Sudan, Discrete Applied Math, 1994)

Problem SqR is NP-complete.

Theorem (L.C. Lau, D.G. Corneil, SIAM J. Discrete Math, 2004)
The Problem SqR remains NP-complete for chordal graphs.

Theorem (Martin Milani¢, Oliver Schaudt, Discrete Applied Math,
2013)

The Problem SqR is polynomial for trivially perfect and threshold graphs.
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Problem (SqR)

A Square Root of a Graph
Instance: A graph G.
Question: Does there exist a graph H such that H> = G?

Theorem (R. Motwani, M. Sudan, Discrete Applied Math, 1994)

Problem SqR is NP-complete.

Theorem (L.C. Lau, D.G. Corneil, SIAM J. Discrete Math, 2004)

The Problem SqR remains NP-complete for chordal graphs.

@ A chordal graph is one whose cycles on g > 4 vertices have a chord.

Figure: Chordal graphs: only Gy has square roots, namely G € v/ Gp.
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Problem (SqR)

A Square Root of a Graph
Instance: A graph G.
Question: Does there exist a graph H such that H> = G?

Theorem (Martin Milani¢, Oliver Schaudt, Discrete Applied Math,

2013)
The Problem SqR is polynomial for trivially perfect graphs.

o Gis a trivially perfect graph if each of its induced subgraphs H has
a(H) maximal cliques (M. C. Golumbic, Discrete Math. 1978).

@ They are exactly the (P, and C)-free graphs (Golumbic, DM 1978).

G Gy Gs

e (On
Levit & Mandrescu (AU & HIT
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Threshold graphs

Definition
A graph G = (V, E) is called threshold (V. Chvatal and P. L. Hammer,
1977) if it can be obtained from Kj by iterating, in any order, the
operations of adding a new vertex which is connected to

no other vertex (i.e., an isolated vertex) or

every other vertex (i.e., a dominating vertex). )

19/06 18 / 55
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Definition
A graph G = (V/, E) is called threshold (V. Chvatal and P. L. Hammer,
1977) if it can be obtained from Kj by iterating, in any order, the
operations of adding a new vertex which is connected to

no other vertex (i.e., an isolated vertex) or

every other vertex (i.e., a dominating vertex).

K1, and K, are threshold graphs. \
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Threshold graphs

Definition
A graph G = (V/, E) is called threshold (V. Chvatal and P. L. Hammer,
1977) if it can be obtained from Kj by iterating, in any order, the
operations of adding a new vertex which is connected to
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every other vertex (i.e., a dominating vertex).

K1, and K, are threshold graphs. \
1
o
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Threshold graphs

Definition
A graph G = (V/, E) is called threshold (V. Chvatal and P. L. Hammer,
1977) if it can be obtained from Kj by iterating, in any order, the
operations of adding a new vertex which is connected to

no other vertex (i.e., an isolated vertex) or

every other vertex (i.e., a dominating vertex).

K1, and K, are threshold graphs. \
1
o
o
2
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Threshold graphs

Definition
A graph G = (V/, E) is called threshold (V. Chvatal and P. L. Hammer,
1977) if it can be obtained from Kj by iterating, in any order, the
operations of adding a new vertex which is connected to

no other vertex (i.e., an isolated vertex) or

every other vertex (i.e., a dominating vertex).

K1, and K, are threshold graphs. \
1
o

[ [
2 3
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Threshold graphs

Definition
A graph G = (V/, E) is called threshold (V. Chvatal and P. L. Hammer,
1977) if it can be obtained from Kj by iterating, in any order, the
operations of adding a new vertex which is connected to

no other vertex (i.e., an isolated vertex) or

every other vertex (i.e., a dominating vertex).

K1, and K, are threshold graphs. \
1
2 4 3
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Threshold graphs

Definition
A graph G = (V/, E) is called threshold (V. Chvatal and P. L. Hammer,
1977) if it can be obtained from Kj by iterating, in any order, the
operations of adding a new vertex which is connected to

no other vertex (i.e., an isolated vertex) or

every other vertex (i.e., a dominating vertex).

K1, and K, are threshold graphs. \
1
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Threshold graphs

Definition
A graph G = (V/, E) is called threshold (V. Chvatal and P. L. Hammer,
1977) if it can be obtained from Kj by iterating, in any order, the
operations of adding a new vertex which is connected to

no other vertex (i.e., an isolated vertex) or

every other vertex (i.e., a dominating vertex).

K1, and K, are threshold graphs. \

1 6

2 4 3 5

Figure: G is a threshold graph : 4 and 6 are dominating vertices.

19/06 18 / 55
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Problem (SqR)

A Square Root of a Graph
Instance: A graph G.
Question: Does there exist a graph H such that H> = G?

Theorem (Martin Milani¢, Oliver Schaudt, Discrete Applied Math,
2013)

The Problem SqR is polynomial for threshold graphs.

@ Threshold graphs are exactly the (Ps and C; and 2K),)-free graphs
(V. Chvatal, P. L. Hammer, 1977).

Gy and G, are threshold graphs, but only G, has square roots.

V6

Vi V5 Vi V4
G 1 G2
Vo V3 V4 V2 V3
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In what follows, we discuss:

@ Which Koénig-Egervary graphs have square roots?
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In what follows, we discuss:

@ Which Koénig-Egervary graphs have square roots?
@ How to compute a square root of a Konig-Egervary graph?

© How to compute all square roots of a Kénig-Egervary graph?

° The graph G, has G; as a square root, i.e., G € \/G.

° G3 has no square roots, because it has a leaf.

Gy Go Gs

Figure: Konig-Egervéry graphs.
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Theorem

If a connected Konig-Egervdry graph G of order > 3 has a square root,

then G has perfect matchings and a unique maximum independent set.

Example
The graph G, has G; as a square root.

G3 has no square roots, because it has a leaf.

G 1 G2 G3

Figure: Konig-Egervéry graphs.

@ The converse of theorem above is not necessarily true; e.g., Gs.
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Squares, roots and Konig-Egervary graphs

Theorem (L & M, Graphs and Combinatorics, 2013)
For a graph H of order n > 2, the following are equivalent:

(i) H? is a Konig-Egervary graph;
(ii) H has a perfect matching consisting of pendant edges.

A

Corollary
Each square root of a Kénig-Egervdry graph G, if any,

is of the form Hy o Ky for some graph Hj.

H H?
Ho

Figure: Kénig-Egervary graphs: H = Hy o Kj and H2.
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Squares, roots and Konig-Egervary graphs

@ There are Konig-Egervary graphs, whose squares are not
Konig-Egervdry graphs. E.g., every G),.

@ There are non-Konig-Egervéry graphs, whose squares are not
Konig-Egervéry graphs. E.g., every Copt1.

Theorem (L & M, Graphs and Combinatorics, 2013)

For a graph H of order n > 2, the following are equivalent:
(i) H? is a Konig-Egervary graph;
(ii) H has a perfect matching consisting of pendant edges.

Each square root of a Kénig-Egervdry graph G, if any,

is of the form Hy o Ky for some graph Hj.

Levit & Mandrescu (AU & HIT) Square Roots
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Simplicial graphs

Definition (G. H. Cheston, E. O. Hare, S. T. Hedetniemi and R. C.

Laskar, Congressus Numer 67, 1988)

A vertex v is simplicial in G if Ng(x) is a clique. A simplex is a clique
containing at least one simplicial vertex. G is a simplicial graph if each of
its vertices is either simplicial or adjacent to a simplicial vertex.

v

Theorem (Cheston et al., Congressus Numer 67, 1988)

If G is a simplicial graph and Q1, ..., Qg are the simplices of G, then
V(G) = U{V(Q): 1< i < q} and g = a(G).

U S S S 5°

Figure: Konig-Egervary graphs: H = Hy o Ki and G = H2.
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Square root of a Kénig-Egervary graph

@ A vertex v is simplicial in G if its neighborhood N¢ (v) is a clique.
o G is simplicial if each of its vertices is either simplicial or adjacent to
a simplicial vertex.

If a Kénig-Egervary graph G, of order n > 3, has a square root, then

every vertex of its unique maximum independent set, say Sy, is simplicial.

Moreover, { N¢(x) : x € Sy} is an edge clique cover of G [V (G) — Sy].

So
H G
Ho

Figure: Kénig-Egervary graphs: H = Hyp o K; and G = H2.
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Square roots of a Konig-Egervary graph

Corollary
Each square root of a Kénig-Egervdry graph G, if any,

is of the form Hy o Ky for some graph Hy.

Theorem

If a Kénig-Egervary graph G, of order n > 3, has a square root, then
every vertex of its unique maximum independent set, say Sy, is simplicial.

Moreover, { N (x) : x € Sp} is an edge clique cover of G [V (G) — Sy].

So
H G

Ho

Figure: Konig-Egervary graphs: H = Hg o K1 and G = H?.

Levit & Mandrescu (AU & HIT) Square Roots

19/06 26 / 55



Problem (AlISqR)

All Square Roots of a Kénig-Egervary Graph
Instance: A connected Kénig-Egervdry graph G.
Output: All graphs H such that H> = G.

Theorem
Problem AlISgR is solvable in

O ((IE1-IVI+1VI) +(A(6) + M(n) - |V] - per(6)))

time, where per(G) is the number of perfect matchings of G = (V, E),
and M(n) is the time complexity of a matrix multiplication for two n - n
matrices.
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Core of a graph

Definition (Levit and Mandrescu, Discrete Applied Math, 2002)

core(G) is the intersection of all maximum independent sets of G.

° The problem of whether core(G) # @ is NP-complete
(Endre Boros, M. C. Golumbic, V. E. Levit, Discrete Applied Math,
2002).

G has a unique maximum independent set if and only if

core(G) is a maximum independent set.
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Checking whether a K-E graph may have a square root

@ Testing whether a graph has a unique maximum independent set is
NP-hard (A. Pelc, IEEE Transactions on computers, 1991).

@ We need to check whether a Konig-Egervary graph with perfect
matchings has a unique maximum indep set, and if positive, to find

Lemma

|

Let G = (V, E) be a Konig-Egervadry graph having a perfect matching,
and v € V. Then the following assertions are true:

(i) v € core(G) iff G — v is not a Kénig-Egervary graph;

(ii) one can find core(G) in O(|V| - |E| + |V|?) time;

(iii) one can check whether G has a unique maximum independent

set (namely core(G)), and find it, in O(|V| - |E| + |V|*) time.
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A sketch of an algorithm generating all square roots of a

K-E graph

@ There is a poly time algorithm finding a maximum matching M in G
that needs O(|E|-+/|V|) time (V. V. Vazirani, Combinatorica 1994).
e If 2|M| # |V/|, i.e., M is not perfect, then G has no square root.
e Assume that M is a perfect matching. Hence a (G) = u (G) = |M]|.
@ Since G is a Konig-Egervary graph with a perfect matching,
one can find Sy = core(G) in time O(|V| - |E| + |V|?).

o If w(G) # |So|, then G has no square root, since it has more than
one maximum independent set.
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e Otherwise, we infer that ()(G) = {Sp} and G = Sy * H;.

| [
b ./ >‘ L b ./ >. u
s KISyl
d ./ \. Uy d ./ \. ug
So Hy

G Hp

@ One can run an algorithm generating all perfect matchings in the
bipartite graph Hg = (So, V (H1), E — E (Hi)) with the time
complexity O (\/m |E (Hg)| + per(Hg) - log ]V\)

(T. Uno, LNCS 2223, 2001).

Levit & Mandrescu (AU & HIT) Square Roots



e In other words, every solution of the equation G = H? is based on a
choice of a perfect matching of the bipartite graph Hg.

o Let My = {x;jy;: 1 </ <|V|/2} be such a perfect matching of Hg,
where Sop = {x; : 1 </ < |V]|/2}.

X1 X2 X3 X4

Hq G
Vi Y2 y3 Va
X1 X X3 Xq

H, H3
Y3 a1 ya

Figure: Hy, Hp are candidates for the equation H? = G, corresponding to
different perfect matchings of Hg, but only H12 = G.
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To define the edge set of the graph H as a function of the perfect
matching My, we proceed as follows:

keep My be such as a part of E (H);

check that for every x,z € E(G) — {xkyx}, 1 < k < |V| /2, there
exists the edge y,z € E (G), otherwise My may not generate a square
root of G;

build the graph Hp as follows:

V(Ho) = V=25,
E(Ho) = {mz:xxz€ E(G)—{xw} 1<k <|V[/2};

if (V,E(Ho)UMy)” = G, then the graph (V, E (Hy) U M) is a
square root of G, otherwise My does not generate a square root.
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@ Since Sy is the unique maximum independent set of a Kénig-Egervary
graph G, and, on the other hand, by a Theorem characterizing
Konig-Egervéry graphs, every matching of G is contained in
(So, V — Sp), one may conclude that the graphs G = Sy * H; and
Hg = (S0, V (H1), E — E (H1)) have the same perfect matchings.

@ In summary, testing all the perfect matchings of the bipartite graph
Hg one can generate v/ G with

O ((IE- VI + V) + ((A(G) +M(n)) - V|- per(6))

time complexity.
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Symmetric bipartite graphs

Definition (N. Kakimura, 2008)

A bipartite graph G = (A, B, E) with |A| = |B| is said to be
symmetric if a;b; € E holds for every a;b; € E.

v

G; is bipartite and symmetric, while

Gy is bipartite, but not symmetric.
by b b3 by bs bi b b3 by bs
al an a3 a4 as al an a3 a4 ds

Figure: Bipartite graphs on the same vertices.
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Definition
Let F = (A, B, E) be a bipartite graph, such that A= {a;: 1 < j < p}
and B = {by : 1 < k < q}. The adjacency matrix of F is

Adj(F) = (xjk) where xj = 1 if ajb, € E , and xj = 0, otherwise.

pxq’

| \,

Example
a 11000
e )@ 11100 . . .
Adj(F) = 2 01110 and M is a maximum matching.
a4 011 11

by by by by by

- P

a1 an as da

Figure: "Blue matching" is a maximum matching.
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Let M be a perfect matching of F = (A, B, E). The permutation matrix
Py determined by M is: Py (i,j) = 1 if and only if a;b; € M.

by bz ba

b
a 1 1 0 0 (1) 8 8 (1)
Adj(F) = a 1 1 1 0 = Py = 010 0
a3 0 1 1 1 0010
a4 0 1 1 1

Figure: M = {a1by, axb3, a3bs, agby } is a perfect matching.
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Definition

Let M be a perfect matching of F = (A, B, E).
The permutation matrix Py, determined by M is:

P (i,j) = 1 if and only if a;b; € M.

a4 /1100 1000
x| 1110 (o001
AG(F)= "l o111 |=™M=|010 0

% \0 1 1 1 0010

ail an as a4

Figure: M = {a1by, axb3, a3ba, agby } is a perfect matching.
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Let M is a perfect matching of F = (A, B, E). The corresponding
adjacency matrix of F with respect to M is Adj(F, M) = Adj(F) % Py.

1 1 00 1 0 0 O 1 0 0 1
(3110 (22ed] (1100
01 11 0 01O 0111

by b b3 by bi b3 by b

ag a a a aa a a3 a

Figure: "Blue matching" is a perfect matching.
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Definition
A perfect matching M of F = (A, B, E) is symmetric if
Adj(F, M) = Adj(F) = Py is symmetric, i.e.,

M = {aibey: 1< i < |Al} s symmetric if ;) be(;) € E holds for

every a;b; € E.

| A

Example
1 011 0 010
: 0111 0 0 01
AG(F.M)=11 0 1 0 1000 |~
01 0 1 01 00
by by b3 by bs

o = o o
Levit & Mandrescu (AU & HIT Square Roots

1 1 1
1 10
1 01
0 1 O
bi b

19/06

= O = O
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Definition
Let F = (A, B, E) be a bipartite graph, such that A= {a;: 1 < j < p}
and B = {b : 1 < k < g}. The adjacency matrix of F is

Adj(F) = (xjk) where xj = 1 if ajb, € E and xj = 0, otherwise.

pxq’

| \

Definition

Let F = (A, B, E) be a bipartite graph, and M be a perfect matching of
F. The corresponding adjacency matrix of F with respect to M is
Adj(F, M) = Adj(F) * Py.

§

Clearly, if F = (A, B, E) has a perfect matching M,then Adj(F, M) has
X = 1, for all k € {1,2, e |A‘}

Definition

Let F = (A, B, E) be a bipartite graph. A perfect matching M is
symmetric if Adj(F, M) is symmetric. In other words a perfect matching

M = {a,-bT(,-) 1< < \A]} is symmetric if a.-1(;b.(;) € E holds for
every a;b; € E.
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Definition

A perfect matching M = {aibe() 11 < i < [Al} in F = (A, B, E)

is symmetric if a.-1(;)by(;y € E holds for every a;b; € E.

@ A bipartite graph may have both symmetric and non-symmetric
perfect matchings.

M1 = {a,-b,- 01 S I S 5} and M2 = {albl,azb2,33b4,a4b5,a5b3}

are perfect matchings, but only M; is symmetric.

by by b3 bs b bi by ba by b3
M % %g M £ % %g
dal an as3 a4 das di dn a3 dsq ds

Figure: Both My and M, are perfect matchings of the same bipartite graph.
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Projection with respect to a perfect matching

The projection of F = (A, B, E) on A with respect to a perfect matching
M = {aibj : 1 < i <|A|}is a graph P = P(F, M, A) defined as follows:

V(P) = A and E(P) = {a,-aj : a,-bj € E or ajb,- & E}.

The projection P = P(F, M, A) of F = (A,B,E) on A
with respect to the perfect matching M = {a;b; : 1 < i < 5}.
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A new interpretation of an old result

Theorem (A. Mukhopadhyay, J. Combin. Th., 1967)

A connected graph G on n vertices vi, v, ..., v,, has a square root if and
only if there exists an edge clique cover Q1, ..., @, of G such that, for all
i,j € {1, ... n}, the following hold:

(i) Qi contains v;, for all i € {1,...,n},; and

(i) for all i,j € {1, ..., n}, Q; contains v; iff Q; contains v;.

l.e., the fact that G has a square root means that a natural matching
{viQ; : 1 < i < n} in the vertex-clique bipartite graph is symmetric.
Qq Q@ Q U &

Figure: Vertex-clique bipartite graph.
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Square roots of a Konig-Egervary graph

USSR

Figure: Konig-Egervary graphs: H = Hy o K; and G = H2.

Qi ={vi,v, vz}, Q ={vi, v, 3},
QB ={vi,v,vz, v}, Q={vz,va, 5}, Q = {vs, s}

0

Figure: Konig-Egervary graphs: H = Hy o Ki and G = H2.

So
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Theorem (A. Mukhopadhyay, J. Combin. Th., 1967)

A connected graph G on n vertices vi, v, ..., v,, has a square root if and

only if there exists an edge clique cover Q1, ..., @, of G such that, for all
i,j € {1, ..., n}, the following hold: (i) vi € Q; , for all i € {1, ...,n}; and

(i) for all i,j € {1, ..., n}, Q; contains v; iff Q; contains v;.

Theorem

| \

If a Kénig-Egervary graph G, of order n > 3, has a square root, then
every vertex of its unique maximum independent set, say Sy, is simplicial.
Moreover, { N (x) : x € Sy} is an edge clique cover of G [V (G) — Sp].

QR & QU @

Figure: A Kénig-Egervary graph G and its vertex-clique bipartite graph BC(G).
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Definition (Double Covering)

Let G =(V,E),V={vi,va,....vp},and V = {01, 0n,..., 0} . The
double covering of G is the bipartite graph B(G) with the bipartition
{V, \7} and edges v;U; and v;¥; for every edge v;v; € E.

Theorem (R. A. Brualdi, F. Harary, Z. Miller, J. Graph Theory, 1980)

B(G) is connected iff G is connected and non-bipartite.

Theorem (Dragan Marusic, R. Scapellato, N. Zagagha Salvi)

Let A be a g-matrix (a square symmetric (0, 1) matrix with the O (zero)
principal diagonal) of order n, and R be a permutation matrix
representing an n-cycle. Then A x R is a g-matrix if and only if A = 0.
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Let A be a g-matrix (a square symmetric (0, 1) matrix with the O (zero)
principal diagonal) of order n , and R be a permutation matrix
representing an n-cycle. Then Ax R is a g-matrix if and only if A= 10 .

A Latin Square Sketch of the Proof:

1 * * = 1 % % 2 1 4 3 2
*x 1 x x N 2 1 x x N 2 1 4 3 B
* ok 1k * 2 1 x* 3 2 1 4
* * *x 1 * *x 2 1 4 3 2 1
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Let A be a g-matrix (a square symmetric (0, 1) matrix with the O (zero)
principal diagonal) of order n , and R be a permutation matrix
representing an n-cycle. Then Ax R is a g-matrix if and only if A= 10 .

A Latin Square Sketch of the Proof:

1 * * = 1 % % 2 1 4 3 2
*x 1 x x N 2 1 x x N 2 1 4 3 B
* ok 1k * 2 1 x* 3 2 1 4
* * *x 1 * *x 2 1 4 3 2 1
Y y2 Y3 ya yi Y2 ya ¥3
x 1 1 0 1 xx 1 1 1 O
@ X 1 1 1 0 X2 1 1 0 1
X3 0 1 1 ]. X3 O 1 ]. 1
X4 1 0 1 1 X4 1 0 1 1
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If F = (A, B, E) has symmetric perfect matchings and twins,

then it has at least two symmetric perfect matchings.

| A\

Proof.
Let M = {a;b; : 1 </ < g} be a symmetric perfect matching of F,
and b, by be twins.

Then the columns of the matrix Adj(F, M) ,
corresponding to b; and by, are identical.

Thus interchanging these two columns leaves the matrix symmetric.

Hence the principal diagonal of the new matrix defines another perfect
matching, that is symmetric, as well. [

v
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If F = (A, B, E) has no twins, then it may have more than one symmetric
perfect matching.

G = (A, B, E) has no twins, while the perfect matchings
Mlz{a,-b,-:lgi§4},
Aﬂbiz {81b2,32b1,33b4,a4b3}

Ms = {a1 b3, axbs, azby, agby } are symmetric.
b1 by bs by by b bs b3 bs by b1 by
ail an =k} ag al 2k as a4 ail an a3 das

Figure: A bipartite graph G = (A, B, E) and three of its perfect matchings.

A
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@ Perm

—_ O = =
O R = =
el =)
el =
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1 101
1 110

@ Perm 011 1 =9
1 01 1
1 vi 2 »3 wa
x 1 1 0 1
e x» 1 1 1 0
x3 0 1 1 1
X4 1 0 1 1

Levit & Mandrescu (AU & HIT) Square Roots 19/06 51 /55



¥3
0
1
1
1

W..J_I_O.I.l .
)
o
St - — O <
©
> 5
&
—
o)) yllOl
I
—~ N o
ANX X X X
\J
Vo " 4 IS4 O~ SO ™=
01113 o .
V/Olll V/Olll e
— - - O T
1= 40 S+ =0 M
— - <
— — =
— ¥ O~ I - O 2
S 3
A~ SRS A T 5 - ™ < I}
L XX X X N XX X X =
Dl <
o [ o m




4 yvi o 3 ya 4 o y3 vuon
1 1 0 1 xx 1 0 1 0

X1

X2

X3

Xq

o)
i)
o
e]
o
g
]
=4
v}
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4 yvi o 3 ya 4 o y3 vuon
1 1 0 1 xx 1 0 1 0

X1

X2

X3

Xq

Yi Y3 ya

5

Y2 Y3 Ya

5 y

1 01 x 1 1 0 1

1

X1

X2

X3

Xq

o)
i)
o
e]
o
g
]
=4
v}
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4 yvi o 3 ya 4 o y3 vuon
1 1 0 1 xx 1 0 1 0

X1

X2

X3

Xq

Yi Y3 ya

5

Y2 Y3 Ya

5 y

1 01 x 1 1 0 1

1

X1

X2

X3

Xq

yi ya Y3

6 »

Y2 Y3 Ya

6 »

o)
i)
o
e]
o
g
]
=4
v}
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T 1 Y2 3 ya T ya y1 Y2 V3
X1 1 1 0 1 X1 1 1 1 0
e x» 1 1 1 0 x 0 1 1 1
x3 001 1 1 x3 1 0 1 1
xx 1 0 1 1 x 1 1 0 1
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7T o 1oy

X1
X2
X3
X4

X1
X2
X3
Xq

1 1 1
0 1 1
1 0 1
1 1 0
Ya y3 Y2
1 0 1
0 1 1
1 1 1
1 1 0
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yi y2 3

7 ya

Y2 y3 ya

7 oy

3 Y2 n
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yi y2 3

7 ya

Y2 y3 ya

7 oy

X3

X4

3 Y2 n
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@ An induced matching in a graph G is a matching M where no two
edges of M are joined by an edge.

@ Every induced macthing in a bipartite graph is symmetric as well.

@ Consequently, the size of a maximum symmetric matching is
greater or equal to the size of a maximum induced matching.

@ The problem of finding a maximum induced matching is NP-hard,
even for bipartite graphs (K. Cameron, Discrete Applied Math, 1989;
L. J. Stockmeyer and V. V. Vazirani, Inform. Proc. Letters, 1982).

by by b3 by bs by by b3 by bs
ai a a3 a; as ai a a as as

Figure: "Blue matchings" are induced matchings.
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So Much for Today, but ...
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So Much for Today, but ...

Estimate the number of symmetric perfect matchings of a balanced
bipartite graph.
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So Much for Today, but ...

Estimate the number of symmetric perfect matchings of a balanced
bipartite graph.

Problem
Find the size of a maximum symmetric matching of a bipartite graph.
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So Much for Today, but ...

Estimate the number of symmetric perfect matchings of a balanced
bipartite graph.

Problem

Find the size of a maximum symmetric matching of a bipartite graph.

Problem

Given a balanced bipartite graph without twins and a symmetric perfect
matching, find another symmetric perfect macthing, if any.
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So Much for Today, but ...

Estimate the number of symmetric perfect matchings of a balanced
bipartite graph.

Problem
Find the size of a maximum symmetric matching of a bipartite graph.

Problem
Given a balanced bipartite graph without twins and a symmetric perfect
matching, find another symmetric perfect macthing, if any.

All square-roots of a Kénig-Egervdry graph G are isomorphic.
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